콘텐츠로 건너뛰기
Merck
모든 사진(2)

주요 문서

192066

Sigma-Aldrich

Poly(2-hydroxyethyl methacrylate)

average Mv 300,000, crystalline

동의어(들):

Poly(2-HEMA), Poly-HEMA

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
(C6H10O3)n
CAS Number:
MDL number:
UNSPSC 코드:
12162002
PubChem Substance ID:
NACRES:
NA.23

양식

crystalline

분자량

average Mv 300,000

density

1.15 g/mL at 25 °C (lit.)

SMILES string

CC(=C)C(=O)OCCO

InChI

1S/C6H10O3/c1-5(2)6(8)9-4-3-7/h7H,1,3-4H2,2H3

InChI key

WOBHKFSMXKNTIM-UHFFFAOYSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Solid Poly(2-hydroxyethyl methacrylate) (pHEMA) is brittle, while pHEMA hydrogel is a soft material. Glass transition temperature for pHEMA hydrogels is reduced by increasing a content of water in the matrix. Macromolecular properties in pHEMA are characterized by non-covalent interactions of hydrogen-bonds among the polymer chains as well as the hydrated water molecules. The presence of polar groups of hydroxyl and carboxyl on each repeat unit makes this polymer compatible with water. The hydrophobic a-methyl groups of the backbone convey hydrolytic stability to the polymer and enhance mechanical strength of the polymer matrix.

애플리케이션

pHEMA scaffolds are used in tissue engineering. It can be used in hydrogels for biomedical applications, as sorbents for metal ions.pHEMA has been used in applications such as soft contact lenses, in drug delivery systems, and in kidney dialysis membranes.Nanoparticles of pHEMA may be employed as a carrier for controlled delivery of anticancer and antitumor drugs.

물리적 형태

Water-swellable polymer. Hydrogel.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

Eyeshields, Gloves, type N95 (US)


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

W E Roorda et al.
Pharmaceutical research, 5(11), 722-725 (1988-11-01)
The freezing and melting behavior of water in poly hydroxy ethyl methacrylate (pHEMA) hydrogels of different cross-linker and water contents was investigated in relation to the glass transition temperature (Tg) of the gels. After prolonged cooling at -15 degrees C
Fiber templating of poly (2-hydroxyethyl methacrylate) for neural tissue engineering
Flynn L,et al
Biomaterials, 24(23), 4265-4272 null
Yunfeng Li et al.
ACS applied materials & interfaces, 5(6), 2126-2132 (2013-02-23)
This paper presents a versatile way to prepare multiscale and gradient patterns of proteins. The protein patterns are fabricated by conjugating proteins covalently on patterns of polymer brush that are prepared by techniques combining colloidal lithography with photolithography, and two-step
Xiangling Meng et al.
Journal of biomedical materials research. Part A, 101(4), 1095-1102 (2012-09-26)
The objective of the present in vitro study was to investigate cardiomyocyte functions, specifically their adhesion and proliferation, on injectable scaffolds containing RNT (rosette nanotubes) and CNF (carbon nanofibers) in a pHEMA (poly(2-hydroxyethyl methacrylate)) hydrogel to determine their potential for
N Nogueira et al.
Journal of colloid and interface science, 385(1), 202-210 (2012-07-31)
The behavior of poly(2-hydroxyethyl methacrylate) (PHEMA) polymer monolayer spread on water was studied under various experimental conditions. The influence of subphase pH and temperature, compression speed, elapsed time from the deposit of the monolayer and the recording of the surface

문서

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

Self-assembled monolayers (SAMs) have attracted enormous interest for a wide variety of applications in micro- and nano-technology. In this article, we compare the benefits of three different classes of SAM systems (alkylthiolates on gold.

Biomaterials science involves the design and fabrication of smart materials for studying, directing, or mimicking biology. For successful integration of biomaterials in biological research, a meaningful understanding of biological systems is required.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.