Skip to Content
Merck
All Photos(3)

Key Documents

270598

Sigma-Aldrich

1,2-Dichlorobenzene

suitable for HPLC, 99%

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H4Cl2
CAS Number:
Molecular Weight:
147.00
Beilstein:
606078
EC Number:
MDL number:
UNSPSC Code:
12190000
PubChem Substance ID:
NACRES:
NA.21

vapor density

5.1 (vs air)

Quality Level

vapor pressure

1.2 mmHg ( 20 °C)
1.6 mmHg ( 35 °C)

Assay

99%

form

liquid

autoignition temp.

1198 °F

purified by

glass distillation

expl. lim.

9.2 %

technique(s)

HPLC: suitable

impurities

<0.020% water

evapn. residue

<0.0005%

refractive index

n20/D 1.551 (lit.)

bp

178-180 °C (lit.)

mp

−18-−17 °C (lit.)

density

1.306 g/mL at 25 °C (lit.)

λ

H2O reference

UV absorption

λ: 296 nm Amax: 1.00
λ: 300 nm Amax: 0.30
λ: 305 nm Amax: 0.20
λ: 335 nm Amax: 0.05
λ: 375-400 nm Amax: 0.01

SMILES string

Clc1ccccc1Cl

InChI

1S/C6H4Cl2/c7-5-3-1-2-4-6(5)8/h1-4H

InChI key

RFFLAFLAYFXFSW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application


  • Microstructure regulation and enhanced VOC removal performance of carbon aerogels by surface carbon nanotube grown.: This study presents a new method to enhance the removal of volatile organic compounds, including 1,2-Dichlorobenzene, using surface-modified carbon aerogels (Cheng et al., 2024) (Cheng et al., 2024).

  • Role of Electronegativity in Environmentally Persistent Free Radicals (EPFRs) Formation on ZnO.: This research investigates how surface chemistry affects the formation of persistent free radicals, including those from 1,2-Dichlorobenzene on zinc oxide surfaces (Ahmed et al., 2024) (Ahmed et al., 2024).

  • Cu(I) Complexes Catalyzed the Dehydrogenation of N-Heterocycles.: This article discusses the application of copper(I) complexes in catalyzing the dehydrogenation of N-heterocycles, including reactions involving 1,2-Dichlorobenzene derivatives (Shen et al., 2024) (Shen et al., 2024).

  • New Features of Laboratory-Generated EPFRs from 1,2-Dichlorobenzene (DCB) and 2-Monochlorophenol (MCP).: This publication explores the characteristics of laboratory-generated free radicals from 1,2-Dichlorobenzene, shedding light on its environmental impact and degradation processes (Khachatryan et al., 2024) (Khachatryan et al., 2024).

  • Estimate of the C-Cl photoionization cross section and absolute photoionization cross sections of chlorinated organic compounds.: This study provides critical data on the photoionization properties of chlorinated organic compounds, including 1,2-Dichlorobenzene, which is important for understanding its behavior in atmospheric chemistry (Chen et al., 2024) (Chen et al., 2024).

Recommended products

Discover LiChropur reagents ideal for HPLC or LC-MS analysis

Pictograms

Exclamation markEnvironment

Signal Word

Warning

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1B - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 2

Flash Point(F)

150.8 °F - closed cup

Flash Point(C)

66.0 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Y Chen et al.
Physical chemistry chemical physics : PCCP, 14(41), 14142-14151 (2012-08-08)
In this perspective article, we discuss the dynamic instability of charge carrier transport in a range of popular organic semiconductors. We observe that in many cases field-effect mobility, an important parameter used to characterize the performance of organic field-effect transistors
Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes.
Peng X, et al.
Chemical Physics Letters, 376(1), 154-158 (2003)
Catalytic oxidation of 1, 2-dichlorobenzene over supported transition metal oxides.
Krishnamoorthy S, et al.
J. Catal., 193(2), 264-272 (2000)
Sébastien Haar et al.
Scientific reports, 5, 16684-16684 (2015-11-18)
Due to a unique combination of electrical and thermal conductivity, mechanical stiffness, strength and elasticity, graphene became a rising star on the horizon of materials science. This two-dimensional material has found applications in many areas of science ranging from electronics
Marina V Ivanova et al.
International journal of nanomedicine, 7, 403-415 (2012-02-16)
Carbon nanotubes (CNTs) are novel materials with considerable potential in many areas related to nanomedicine. However, a major limitation in the development of CNT-based therapeutic nanomaterials is a lack of reliable and reproducible data describing their chemical and structural composition.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service