Skip to Content
Merck
All Photos(3)

Documents

741442

Sigma-Aldrich

(3-Aminopropyl)triethoxysilane

≥98.0%

Synonym(s):

APTS, 3-Triethoxysilylpropylamine, APTES

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H2N(CH2)3Si(OC2H5)3
CAS Number:
Molecular Weight:
221.37
Beilstein:
1754988
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥98.0%

form

liquid

color

APHA: ≤25

refractive index

n20/D 1.421

bp

217 °C/760 mmHg (lit.)

density

0.929 g/mL at 25 °C
0.946 g/mL at 25 °C (lit.)

SMILES string

CCO[Si](CCCN)(OCC)OCC

InChI

1S/C9H23NO3Si/c1-4-11-14(12-5-2,13-6-3)9-7-8-10/h4-10H2,1-3H3

InChI key

WYTZZXDRDKSJID-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

(3-Aminopropyl)triethoxysilane (APTES) is an aminosilane that is majorly utilized in the chemical modification of a variety of surfaces such as alumina and silica. It can act as an adhesion promoter between the polymer and the substrate material. It can also be used in the immobilization of surface molecules. The attachment of APTES molecules with the atoms present on the surface happens through chemisorption which results in the formation of a self-assembled monolayer (SAM) on the substrate.

Application

APTES can be used in a variety of applications such as an anti-corrosive coating, surface treatment for biological applications, and capping of surface atoms for diagnostic applications.

Pictograms

CorrosionExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Skin Corr. 1B - Skin Sens. 1

Storage Class Code

8A - Combustible, corrosive hazardous materials

WGK

WGK 1

Flash Point(F)

195.1 °F - closed cup

Flash Point(C)

90.6 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Covalent immobilisation of antibodies in Teflon-FEP microfluidic devices for the sensitive quantification of clinically relevant protein biomarkers
Pivetal J, et al.
Analyst, 142(6), 959-968 (2017)
Structure and growth of chromophore-functionalized (3-aminopropyl) triethoxysilane self-assembled on silicon
Heiney PA, et al.
Langmuir, 16(6), 2651-2657 (2000)
Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: dependence on solution temperature
Pasternack RM, et al.
Langmuir, 24(22), 12963-12971 (2008)
Non-neurogenic SVZ-like niche in dolphins, mammals devoid of olfaction
Parolisi R, et al.
Brain Structure &Amp; Function, 222(6), 2625-2639 (2017)
Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating
Ivanou DK, et al
Corrosion Science, 73(6), 300-308 (2013)

Articles

atomic layer deposition (ALD), microelectronics, Mo:Al2O3 films, nanocomposite coating, photovoltaics, semiconductor devices, W:Al2O3 films, composite films, layer-by-layer

A hard disk drive (HDD) is a data storage device that stores digital information by magnetizing nanosized magnets on flat disks and retrieves data by sensing the resulting magnetic field.

Spin-based electronic (spintronic) devices offer significant improvement to the limits of conventional charge-based memory and logic devices which suffer from high power usage, leakage current, performance saturation, and device complexity.

The properties of many devices are limited by the intrinsic properties of the materials that compose them.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service