Skip to Content
Merck
All Photos(1)

Key Documents

674273

Sigma-Aldrich

1-Nonanethiol

99%

Synonym(s):

1-Nonyl mercaptan, Mercaptan C9

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3(CH2)8SH
CAS Number:
Molecular Weight:
160.32
Beilstein:
1733631
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

99%

refractive index

n20/D 1.455 (lit.)

bp

220 °C (lit.)

density

0.842 g/mL at 25 °C (lit.)

storage temp.

2-8°C

SMILES string

CCCCCCCCCS

InChI

1S/C9H20S/c1-2-3-4-5-6-7-8-9-10/h10H,2-9H2,1H3

InChI key

ZVEZMVFBMOOHAT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

1-Nonanethiol is an alkanethiol, a stabilizer that forms a self-assembled monolayer (SAM) on a variety of substrates. It is used as a thiol based protective coating.

Application

1-Nonanethiol is mainly used to form self-organized monolayers on gold, mercury, silver and platinum surfaces. These monolayers functionalize the surface atoms and improve the surface property of the composite.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

174.2 °F - closed cup

Flash Point(C)

79 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant.
Heath JR, et al.
The Journal of Physical Chemistry B, 101(2), 189-197 (1997)
Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes.
Slowinski K, et al.
Journal of the American Chemical Society, 119(49), 11910-11919 (1997)
Nanoscale reversible molecular extraction from a self-assembled monolayer on gold (111) by a scanning tunneling microscope.
Mizutani W, et al.
Langmuir, 14(25), 7197-7202 (1998)
Zuoti Xie et al.
Journal of the American Chemical Society, 141(1), 497-504 (2018-12-12)
Developing a clearer understanding of electron tunneling through molecules is a central challenge in molecular electronics. Here we demonstrate the use of mechanical stretching to distinguish orbital pathways that facilitate tunneling in molecular junctions. Our experiments employ junctions based on

Articles

Self-assembled monolayers (SAMs) have attracted enormous interest for a wide variety of applications in micro- and nano-technology. In this article, we compare the benefits of three different classes of SAM systems (alkylthiolates on gold.

Inorganic nanomaterials are tunable by size, shape, structure, and/or composition. Advances in the synthesis of well-defined nanomaterials have enabled control over their unique optical, electronic, and chemical properties stimulating tremendous interest across a wide range of disciplines. This article illuminates some of the recent research advances of inorganic nanoparticles (NPs) in optoelectronics applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service