Skip to Content
Merck
All Photos(3)

Documents

442631

Sigma-Aldrich

Coumarin 6

98%

Synonym(s):

3-(2-Benzothiazolyl)-7-(diethylamino)coumarin, 3-(2-Benzothiazolyl)-N,N-diethylumbelliferylamine

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C20H18N2O2S
CAS Number:
Molecular Weight:
350.43
Beilstein:
1085798
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

98%

form

solid

mp

208-210 °C (lit.)

λmax

444 nm

fluorescence

λem 505 nm in ethanol (Lasing peak 534 nm, lasing range 515 - 558 nm (DMSO), pump source XeCl (308 nm))

OLED Device Performance

ITO/Alq3:Coumarin 6/Mg:Ag

  • Color: green
  • Max. EQE: 2.5 %

SMILES string

CCN(CC)c1ccc2C=C(C(=O)Oc2c1)c3nc4ccccc4s3

InChI

1S/C20H18N2O2S/c1-3-22(4-2)14-10-9-13-11-15(20(23)24-17(13)12-14)19-21-16-7-5-6-8-18(16)25-19/h5-12H,3-4H2,1-2H3

InChI key

VBVAVBCYMYWNOU-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Coumarin 6 (C6) is a derivative of coumarin with a benzothiazolyl group at the position 3. It emits fluorescence in solid and solution state and is used as fluorescent dye to stain organelles. C6 is majorly used as blue-green spectrum laser dye and is microenvironment sensitive.
Coumarin 6 is a fluorescent dye that belongs to the 7-diethylaminocoumarin series that can be used in a variety of biological activities. It can be used as a dopant that exhibits green light (500 nm) in optoelectronic applications.

Application

Coumarin 6 dye can be used in the labeling and visualization of polymeric nanoparticles in biological applications, such as oral drug delivery systems for cancer. It can also be used in development of electroluminescent devices such as organic light emitting diodes (OLEDs).
Coumarin 6 has been used as a hydrophobic fluorescent dye
  • in block copolymer (BCP)-based micelle based drug delivery studies in glioma cell lines
  • in combination with flufenamic acid (FA) based nanoprodrug uptake in glioma cells
  • in poly(lactic-co-glycolic acid) (PLGA) based elvitegravir nanoprodrug uptake studies

Laser dye

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages
Gong Y, et al.
Biochemistry and Biophysics Reports, 12, 214-219 (2017)
Fluorescent microcrystals obtained from coumarin 6 using the reprecipitation method
Fery-Forgues S, et al.
Journal of Fluorescence, 18(3-4), 619-624 (2008)
Photophysical and photochemical properties of Coumarin-6 molecules incorporated within MCM-48
Li D, et al.
Materials Letters, 59(17), 2120-2123 (2005)
Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices.
Wu CC, et al.
Applied Physics Letters, 70(11), 1348-1350 (1997)
Martina M Tzanova et al.
International journal of pharmaceutics, 592, 120100-120100 (2020-11-24)
The objective of this work was to develop and characterize solid lipid nanoparticle (SLN)-loaded mucoadhesive films to reveal their potential as successful drug formulations. SLNs based on lipid (Lipoid S100) and surfactant (polysorbate 80) were prepared using the solvent-injection method

Articles

One of the common difficulties with intravenous drug delivery is low solubility of the drug. The requirement for large quantities of saline to dissolve such materials limits their clinical use, and one solution for this problem that has recently generated interest is the formation of drug-loaded micelles.

Developed in the last several years, fluorescence quenching microscopy (FQM) has enabled rapid, inexpensive, and high-fidelity visualization of two-dimensional (2D) materials such as graphene-based sheets and MoS2.

Graphene has emerged as the new wonder material. Being only one atom thick and composed of carbon atoms arranged in a hexagonal honeycomb lattice structure, the interest in this material has exploded exponentially since 2004 when it was first isolated and identified using a very simple method.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service