Merck
  • Home
  • Search Results
  • Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse.

Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse.

Biochemical and biophysical research communications (2015-05-02)
Greg M Kowalski, David P De Souza, Micah L Burch, Steven Hamley, Joachim Kloehn, Ahrathy Selathurai, Dedreia Tull, Sean O'Callaghan, Malcolm J McConville, Clinton R Bruce
ABSTRACT

Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Pyridine, JIS special grade, ≥99.5%
Sigma-Aldrich
Pyridine, suitable for hydroxyl value determination, ≥99.5%
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Chlorotrimethylsilane solution, 1.0 M in THF
Sigma-Aldrich
N,O-Bis(trimethylsilyl)trifluoroacetamide, ≥99%
Sigma-Aldrich
Pyridine, ≥99%
Sigma-Aldrich
Pyridine, LR, ≥99%
Sigma-Aldrich
Pyridine, AR, ≥99.5%
Sigma-Aldrich
Methoxyamine hydrochloride, 98%
Sigma-Aldrich
Chlorotrimethylsilane, produced by Wacker Chemie AG, Burghausen, Germany, ≥99.0% (GC)
Sigma-Aldrich
Methoxylamine hydrochloride solution, 25-30 wt. % in H2O
Sigma-Aldrich
Chlorotrimethylsilane, purified by redistillation, ≥99%
Sigma-Aldrich
Chlorotrimethylsilane, ≥98.0% (GC)
Supelco
N,O-Bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane, with 1% trimethylchlorosilane, for GC derivatization, LiChropur