Merck
  • Home
  • Search Results
  • Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity.

Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity.

The Biochemical journal (2015-03-06)
Rebecca J Ford, Morgan D Fullerton, Stephen L Pinkosky, Emily A Day, John W Scott, Jonathan S Oakhill, Adam L Bujak, Brennan K Smith, Justin D Crane, Regje M Blümer, Katarina Marcinko, Bruce E Kemp, Hertzel C Gerstein, Gregory R Steinberg
ABSTRACT

Metformin is the mainstay therapy for type 2 diabetes (T2D) and many patients also take salicylate-based drugs [i.e., aspirin (ASA)] for cardioprotection. Metformin and salicylate both increase AMP-activated protein kinase (AMPK) activity but by distinct mechanisms, with metformin altering cellular adenylate charge (increasing AMP) and salicylate interacting directly at the AMPK β1 drug-binding site. AMPK activation by both drugs results in phosphorylation of ACC (acetyl-CoA carboxylase; P-ACC) and inhibition of acetyl-CoA carboxylase (ACC), the rate limiting enzyme controlling fatty acid synthesis (lipogenesis). We find doses of metformin and salicylate used clinically synergistically activate AMPK in vitro and in vivo, resulting in reduced liver lipogenesis, lower liver lipid levels and improved insulin sensitivity in mice. Synergism occurs in cell-free assays and is specific for the AMPK β1 subunit. These effects are also observed in primary human hepatocytes and patients with dysglycaemia exhibit additional improvements in a marker of insulin resistance (proinsulin) when treated with ASA and metformin compared with either drug alone. These data indicate that metformin-salicylate combination therapy may be efficacious for the treatment of non-alcoholic fatty liver disease (NAFLD) and T2D.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerol, LR, ≥98%
Sigma-Aldrich
Glycerol, JIS special grade, ≥99.0%
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Hydrochloric acid, semiconductor grade PURANAL (Honeywell 17823), fuming 37%, 37-38%
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Hydrochloric acid solution, SAJ first grade, 9.5-10.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 3% in ethanol
Sigma-Aldrich
Hydrochloric acid, suitable for arsenic determination, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid, SAJ super special grade, ≥35.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.1 M
Sigma-Aldrich
Hydrochloric acid, suitable for determination of toxic metals, ≥35.0%
Sigma-Aldrich
Hydrochloric acid solution, 6 M