Skip to Content
Merck
  • Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

Journal of chromatography. A (2014-12-03)
Adrian M Gospodarek, Weitong Sun, John P O'Connell, Erik J Fernandez
ABSTRACT

In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium sulfate, ≥99.5%, for biological purposes
Sigma-Aldrich
Calcium chloride solution, 0.025 M
Sigma-Aldrich
Ammonium sulfate, JIS special grade, ≥99.5%
Sigma-Aldrich
Calcium chloride solution, 3.2 mM
Sigma-Aldrich
Trifluoroacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, SAJ first grade, ≥99.0%
Sigma-Aldrich
Formic acid, JIS special grade, ≥98.0%
Supelco
Tris(2-carboxyethyl)phosphine hydrochloride solution, 0.5 M, pH 7.0(aqueous solution; pH was adjusted with ammonium hydroxide)
Sigma-Aldrich
Potassium phosphate tribasic, reagent grade, ≥98%
Sigma-Aldrich
Tris(2-carboxyethyl)phosphine hydrochloride, powder
Sigma-Aldrich
Tris(2-carboxyethyl)phosphine hydrochloride, BioUltra, ≥98% (NMR)
Sigma-Aldrich
Ammonium sulfate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
Formic acid, ACS reagent, ≥96%
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Formic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ammonium sulfate, anhydrous, Redi-Dri, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Ammonium sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Formic acid, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ammonium sulfate, for molecular biology, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, BioXtra, ≥99.0%
Supelco
Calcium ion solution for ISE, 0.1 M Ca, analytical standard (for ion-selective electrodes)
Supelco
Calcium standard for AAS, analytical standard, 1.000 g/L Ca+2 in hydrochloric acid, traceable to BAM
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Ammonium sulfate, 99.999% trace metals basis
Sigma-Aldrich
Ammonium sulfate, BioUltra, ≥99.0% (T)