Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

44886

Sigma-Aldrich

Dextran from Leuconostoc spp.

Mr ~70000

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C6H10O5)n
CAS Number:
EC Number:
MDL number:
UNSPSC Code:
12352201

form

solid

mol wt

Mr ~70000

loss

≤7% loss on drying

absorption

≤0.05 at 375 nm in H2O at 10%

storage temp.

room temp

InChI

1S/C18H32O16/c19-1-5(21)9(23)10(24)6(22)3-31-17-16(30)14(28)12(26)8(34-17)4-32-18-15(29)13(27)11(25)7(2-20)33-18/h1,5-18,20-30H,2-4H2

InChI key

FZWBNHMXJMCXLU-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

narrow molecular weight distribution

Application

Dextran is a branched glucan composed of linear α(1→6) linked glucose units and α (1→3) link initiated branches. Dextran ranges in size from 10,000 to 150,000 Kd. Dextrans are used in many applications as volume extenders, stabilizers, matrix components, binding platforms, lubricants and physical structure components.

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

44886-25G:
44886-BULK:
44886-VAR:
44886-500G:
44886-100G:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Diego Delgado et al.
Human gene therapy, 23(4), 345-355 (2012-02-03)
The goal of the present study was to analyze the potential application of nonviral vectors based on solid lipid nanoparticles (SLN) for the treatment of ocular diseases by gene therapy, specifically X-linked juvenile retinoschisis (XLRS). Vectors were prepared with SLN
Yuichi Ozaki et al.
Circulation journal : official journal of the Japanese Circulation Society, 76(4), 922-927 (2012-02-04)
Although an intracoronary frequency-domain optical coherence tomography (FD-OCT) system overcomes several limitations of the time-domain OCT (TD-OCT) system, the former requires injection of contrast media for image acquisition. The increased total amount of contrast media for FD-OCT image acquisition may
Molecular Weight Effects on the Miscibility Behavior of Dextran and Maltodextrin with Poly(vinylpyrrolidone).
Van Eerdenbrugh B, Taylor LS.
Pharmaceut. Res., doi: 10-doi: 10 (2012)
Melda Altikatoglu et al.
Artificial cells, blood substitutes, and immobilization biotechnology, 40(4), 261-265 (2012-01-28)
In the present study, the stabilizing effect of dextrans as additives on the denaturation and inactivation of glucose oxidase (GOD) was investigated. Three different molecular weighted dextrans (M(w) 17.5, 75, 188 kD) were used with different concentrations. Dramatically increased enzyme
Do Hyung Kim et al.
Nanoscale research letters, 7(1), 91-91 (2012-01-31)
Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly(DL-lactide-co-glycolide) [DexbLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated DexbLG nanoparticles were uniformly distributed in an aqueous solution regardless of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service