Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

L5783

Sigma-Aldrich

Lidocaine N-ethyl bromide

analytical standard, for drug analysis

Synonym(s):

N-(2,6-Dimethylphenylcarbamoylmethyl)triethylammonium bromide, QX-314

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C16H27BrN2O
CAS Number:
Molecular Weight:
343.30
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

analytical standard

Quality Level

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

application(s)

forensics and toxicology
pharmaceutical (small molecule)
veterinary

format

neat

SMILES string

[Br-].CC[N+](CC)(CC)CC(=O)Nc1c(C)cccc1C

InChI

1S/C16H26N2O.BrH/c1-6-18(7-2,8-3)12-15(19)17-16-13(4)10-9-11-14(16)5;/h9-11H,6-8,12H2,1-5H3;1H

InChI key

DLHMKHREUTXMCH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Lidocaine N-ethyl bromide has been used as a standard in studying the demethylation effect of lidocaine N-ethyl bromide on breast cancer cells in vitro using colorimetric assay.
Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

Biochem/physiol Actions

A quaternary derivative of lidocaine that is not membrane permeable. Blocks both fast Na+-dependent action potentials and voltage-dependent, non-inactivating Na+ conductance.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

L5783-250MG-PW:
L5783-BULK:
L5783-250MG:
L5783-50MG-PW:
L5783-50MG:
L5783-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

D P Roberson et al.
British journal of pharmacology, 164(1), 48-58 (2011-04-05)
We have developed a strategy to target the permanently charged lidocaine derivative lidocaine N-ethyl bromide (QX-314) selectively into nociceptive sensory neurons through the large-pore transient receptor potential cation channel subfamily V (TRPV1) noxious heat detector channel. This involves co-administration of
Hossain Md Zakir et al.
PloS one, 7(9), e44023-e44023 (2012-09-11)
Increased expression of the transient receptor potential vanilloid 1 (TRPV1) channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level
Ricardo E Rivera-Acevedo et al.
Anesthesiology, 114(6), 1425-1434 (2011-04-20)
Transient receptor potential vanilloid subfamily member 1 (TRPV1) channels are important integrators of noxious stimuli with pronounced expression in nociceptive neurons. The experimental local anesthetic, QX-314, a quaternary (i.e., permanently charged) lidocaine derivative, recently has been shown to interact with
Arthur Beyder et al.
Circulation, 125(22), 2698-2706 (2012-05-09)
Na(V)1.5 is a mechanosensitive voltage-gated sodium-selective ion channel responsible for the depolarizing current and maintenance of the action potential plateau in the heart. Ranolazine is a Na(V)1.5 antagonist with antianginal and antiarrhythmic properties. Mechanosensitivity of Na(V)1.5 was tested in voltage-clamped
W G Regehr et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(11), 4202-4223 (1992-11-01)
The spatial and temporal dynamics of many electrophysiological and biochemical processes in nerve cells are in turn dependent on the concentration dynamics of the second messenger calcium. We have used microfluorimetry of the calcium indicator fura-2 (Grynkiewicz et al., 1985)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service