Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

437638

Sigma-Aldrich

Tetrahydrofuran

≥99.0%, ACS reagent, contains 250 ppm BHT as inhibitor, suitable for HPLC

Synonym(s):

THF, Butylene oxide, Oxolane, Tetramethylene oxide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C4H8O
CAS Number:
Molecular Weight:
72.11
Beilstein:
102391
EC Number:
MDL number:
UNSPSC Code:
12352005
PubChem Substance ID:
grade:
ACS reagent
Assay:
≥99.0%
technique(s):
HPLC: suitable
bp:
65-67 °C (lit.)
vapor pressure:
114 mmHg ( 15 °C)
143 mmHg ( 20 °C)

Product Name

Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%

grade

ACS reagent

Quality Level

vapor density

2.5 (vs air)

vapor pressure

114 mmHg ( 15 °C)
143 mmHg ( 20 °C)

Assay

≥99.0%

form

liquid

autoignition temp.

610 °F

contains

250 ppm BHT as inhibitor

expl. lim.

1.8-11.8 %

technique(s)

HPLC: suitable

impurities

≤0.015% peroxide (as H2O2)
≤0.05% water

evapn. residue

≤0.03%

color

APHA: ≤20

refractive index

n20/D 1.407 (lit.)

pH

~7

bp

65-67 °C (lit.)

mp

−108 °C (lit.)

solubility

water: soluble

density

0.889 g/mL at 25 °C (lit.)

SMILES string

C1CCOC1

InChI

1S/C4H8O/c1-2-4-5-3-1/h1-4H2

InChI key

WYURNTSHIVDZCO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Tetrahydrofuran may be used used as a solvent in the following processes:
  • Formation of diacetylinic polymers.
  • RAFT polymerization of p-acetoxystyrene.
  • Synthesis of di-tert-butyl-Phosphinoferrocene.
  • Synthesis of n-TiO2-based amphiphilic polymer brushes.
It may be used in the following processes:
  • As mobile phase solvent in high-performance liquid chromatography.
  • As a solvent in the preparation of spin-coated poly(bisphenol A decane ether).
  • Formation of butyrolactone (BTL) by green oxidation method.
  • As a solvent for lignin depolymerization to isolate phenolic monomer.

recommended

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Oral - Carc. 2 - Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

Target Organs

Respiratory system

Supplementary Hazards

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

-6.2 °F - closed cup

Flash Point(C)

-21.2 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

PRTR

Class I Designated Chemical Substances

FSL

Group 4: Flammable liquids
Type 1 petroleums
Hazardous rank II
Water soluble liquid

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

437638-4X4L:4548173150260
437638-4L:
437638-VAR:
437638-16L:
437638-1L:
437638-BULK:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Solène I Cauët et al.
Journal of polymer science. Part A, Polymer chemistry, 48(12), 2517-2524 (2010-07-27)
The kinetics of the RAFT polymerization of p-acetoxystyrene using a trithiocarbonate chain transfer agent, S-1-dodecyl-S'-(α,α'-dimethyl-α″-acetic acid)trithiocarbonate, DDMAT, was investigated. Parameters including temperature, percentage initiator, concentration, monomer-to-chain transfer agent ratio and solvent were varied and their impact on the rate of
1,3 Dioxolane versus tetrahydrofuran as promoters for CO2-hydrate formation: Thermodynamics properties, and kinetics in presence of sodium dodecyl sulfate.
Torre JP, et al.
Chemical Engineering Science, 126, 688-697 (2015)
Oxidation of tetrahydrofuran to butyrolactone catalyzed by iron-containing clay.
Ausavasukhi A and Sooknoi T.
Green Chemistry, 17(1), 435-441 (2015)
An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran.
Long J, et al.
Bioresource Technology, 154, 10-17 (2014)
Novel Diacetylinic Aryloxysilane Polymers: A New Thermally Cross-Linkable High Temperature Polymer System.
Drake K, et al.
Macromolecules, 46(11), 4370-4377 (2013)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service