Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

41700

Sigma-Aldrich

4,N,N-Trimethylaniline

purum, ≥98.0% (GC)

Synonym(s):

4-Dimethylaminotoluene, N,N-Dimethyl-p-toluidine

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3C6H4N(CH3)2
CAS Number:
Molecular Weight:
135.21
Beilstein:
774409
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

vapor density

>1 (vs air)

Quality Level

grade

purum

Assay

≥98.0% (GC)

form

liquid

expl. lim.

7 %

refractive index

n20/D 1.546 (lit.)
n20/D 1.547

bp

211 °C (lit.)
90-92 °C/10 mmHg (lit.)

density

0.937 g/mL at 25 °C (lit.)

functional group

amine

SMILES string

CN(C)c1ccc(C)cc1

InChI

1S/C9H13N/c1-8-4-6-9(7-5-8)10(2)3/h4-7H,1-3H3

InChI key

GYVGXEWAOAAJEU-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

4,N,N-Trimethylaniline is a N-methyl-N-alkylaniline. Its reaction with vinyl ether catalyzed by CuCl2 has been reported to afford tetrahydroquinolines. Its radical cation undergoes reaction with the anthracene radical anion and generation of electrogenerated chemiluminescence (ECL) has been observed.

Pictograms

Skull and crossbonesHealth hazard

Signal Word

Danger

Hazard Classifications

Acute Tox. 2 Inhalation - Acute Tox. 3 Dermal - Acute Tox. 3 Oral - Aquatic Chronic 3 - Carc. 1B - Repr. 2 - Skin Sens. 1 - STOT RE 2 Oral

Target Organs

Reproductive organs

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 3

Flash Point(F)

168.8 °F - closed cup

Flash Point(C)

76 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 4: Flammable liquids
Type 3 petroleums
Hazardous rank III
Water insoluble liquid

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

41700-1L:
41700-6X1L:
41700-BULK:
41700-250ML:
41700-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Zoe M Wright et al.
Advanced healthcare materials, 10(2), e2001189-e2001189 (2020-12-17)
Graphene oxide and functionalized graphenic materials (FGMs) have promise as platforms for imparting programmable bioactivity to poly(methyl methacrylate) (PMMA)-based bone cement. To date, however, graphenic fillers have only been feasible in PMMA cements at extremely low loadings, limiting the bioactive
Xianghua Yang et al.
Molecules (Basel, Switzerland), 11(12), 978-987 (2007-11-17)
Tetrahydroquinoline skeletons can be formed by a CuCl2-catalyzed one-pot reaction of N-methyl-N-alkylanilines and vinyl ethers in the presence of t-butyl-hydroperoxide.
Jacob B Ketter et al.
Journal of the American Chemical Society, 126(32), 10183-10189 (2004-08-12)
Electrogenerated chemiluminescence (ECL) arising from the reaction of radical ions has previously be shown to arise from a variety of states including excited singlets, triplets, excimers, and exciplexes. In this work we describe two systems that form emissive states in
M Noda et al.
Journal of biomedical materials research. Part A, 83(1), 123-129 (2007-03-27)
Resin composites are widely used in dentistry, and are polymerized in situ using a blue-light activated, free-radical polymerization mechanism. Blue light (400-500nm) is used to activate camphoroquinone (CQ), which decomposes to form free radicals that are stabilized by dimethyl-p-toludine (DMPT).
Jennifer L Moreau et al.
Journal of biomedical materials research. Part A, 81(3), 594-602 (2006-12-21)
There is an increasing need to develop new biomaterials as tissue engineering scaffolds. Unfortunately, many of the materials that have been studied for these purposes are polyesters that hydrolytically degrade into acidic products, which may harm the surrounding tissue, and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service