Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

934550

Sigma-Aldrich

Silyl-ether based ROMP monomer

iPrSi

Synonym(s):

2,2-Bis(1-methylethyl)-1,3-dioxa-2-silacyclohept-5-ene

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C11H22O2Si
CAS Number:
Molecular Weight:
214.38
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.21

Assay

≥98%

Quality Level

form

liquid

composition

iPrSi

color

colorless to pale yellow

storage temp.

2-8°C

SMILES string

CC(C)[Si]1(C(C)C)OC/C=C\CCO1

General description

Ring opening metathesis polymerization (ROMP) monomers are attractive building block for advanced polymeric materials in the biomedical field. 2,2-Bis(1-methylethyl)-1,3-dioxa-2-silacyclohept-5-ene , or the silyl ether based ROMP monomer iPrSi, is a bifunctional cyclic olefin that can be used to synthesize a variety of marcomolecules and polymers with diverse compositions and complex structures. iPrSi can copolymerize with a variety of norbornene derivatives including small molecules and macromolecules, enabling the formation of backbone-degradable copolymers that can be used in a variety of biomedical applications. The ROMP polymerization method is superior as it permits the tailorability of the resulting polymer material.

Application

Synthesis of advanced polymeric materials for biomedical applications including:
  • drug delivery
  • molecular imaging
  • self assembly
  • hydrogels
  • medical device coatings
  • stimuli responsive material

Features and Benefits

  • Copolymerize efficiency with a wide variety of norbornene-based (macro)monomers
  • Controlled ROMP polymerization
  • Silyl ether substitute can be tuned to control degradation

related product

Product No.
Description
Pricing

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

934550-1G:
934550-5G:
934550-BULK:
934550-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Scott C Radzinski et al.
Macromolecular rapid communications, 37(7), 616-621 (2016-02-06)
Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess
Peyton Shieh et al.
Nature chemistry, 11(12), 1124-1132 (2019-10-30)
Ring-opening metathesis polymerization of norbornene-based (macro)monomers is a powerful approach for the synthesis of macromolecules with diverse compositions and complex architectures. Nevertheless, a fundamental limitation of polymers prepared by this strategy is their lack of facile degradability, limiting their utility
Banruo Huang et al.
Journal of the American Chemical Society, 143(43), 17920-17925 (2021-10-23)
Materials capable of degradation upon exposure to light hold promise in a diverse range of applications including biomedical devices and smart coatings. Despite the rapid access to macromolecules with diverse compositions and architectures enabled by ring-opening metathesis polymerization (ROMP), a

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service