805548
FK 269 Co(II) PF6 salt
Synonym(s):
Greatcell Solar®
About This Item
Recommended Products
Assay
98%
form
powder
color
orange
SMILES string
C1(N2N=CC=C2)=CC=CC(N3C=CC=N3)=N1.N4(C5=NC(N6N=CC=C6)=CC=C5)N=CC=C4.[Co+2]
InChI
1S/2C11H9N5.Co/c2*1-4-10(15-8-2-6-12-15)14-11(5-1)16-9-3-7-13-16;/h2*1-9H;/q;;+2
InChI key
NBVQBBQINYIIFF-UHFFFAOYSA-N
Application
- Use this cobalt complexes to increase photovoltages of liquid electrolyte cells substantially or to achieve ultrahigh performance with solid state photovoltaic devices, such as perovskite and dye-sensitized solar cells.
- FK 269 cobalt complexes offer guaranteed performance, high reproducibility, consistent results and are of highest purity. In comparison to triiodide-based redox electrolytes, cobalt complexes in general increase photovoltages and particularly at lower light levels (e.g. for indoor applications), significantly increase device power output.
Legal Information
Signal Word
Warning
Hazard Statements
Precautionary Statements
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3
Target Organs
Respiratory system
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Regulatory Listings
Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.
ISHL Indicated Name
Substances Subject to be Indicated Names
ISHL Notified Names
Substances Subject to be Notified Names
JAN Code
805548-5G:
805548-BULK:
805548-VAR:
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.
Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.
For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service