Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

679232

Sigma-Aldrich

Trimethoxymethylsilane

deposition grade, ≥98%

Synonym(s):

Methyltrimethoxysilane

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3Si(OCH3)3
CAS Number:
Molecular Weight:
136.22
Beilstein:
1736151
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

grade

deposition grade

Assay

≥98%

form

liquid

refractive index

n20/D 1.371 (lit.)

bp

102-104 °C (lit.)

density

0.955 g/mL at 25 °C (lit.)

SMILES string

CO[Si](C)(OC)OC

InChI

1S/C4H12O3Si/c1-5-8(4,6-2)7-3/h1-4H3

InChI key

BFXIKLCIZHOAAZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Pictograms

Flame

Signal Word

Danger

Hazard Statements

Hazard Classifications

Flam. Liq. 2

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

48.2 °F

Flash Point(C)

9 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 4: Flammable liquids
Type 1 petroleums
Hazardous rank II
Water insoluble liquid

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

679232-VAR:
679232-50G:
679232-BULK:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Mary E Robbins et al.
Journal of the American Chemical Society, 125(20), 6068-6069 (2003-06-06)
The release of nitric oxide (NO) from polymers has proven to be highly effective at inhibiting platelet adhesion and thus enhancing the blood compatibility of medical implants. Micropatterning techniques were used to design surfaces that release NO while preserving the
Bao Chau N Nguyen et al.
ACS applied materials & interfaces, 2(5), 1430-1443 (2010-04-30)
The elastic properties and/or flexibility of polymer reinforced silica aerogels having methyltrimethoxysilane (MTMS) and bis(trimethoxysilylpropyl)amine (BTMSPA) making up the silica structure are examined. The dipropylamine spacer from BTMSPA is used both to provide a flexible linking group in the silica
Xin Lu et al.
Journal of hazardous materials, 196, 234-241 (2011-09-29)
Poly(aminopropyl/methyl)silsesquioxane (PAMSQ) particles have been synthesized by a one-step hydrolytic co-condensation process using 3-aminopropyltriethoxysilane (APTES) and methyltrimethoxysilane (MTMS) as precursors in the presence of base catalyst in aqueous medium. The amino functionalities of the particles could be controlled by adjusting
Lei Qin et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 17(5), 1696-1704 (2011-01-27)
The main objective of this study was to develop a new methodology for the preparation of a protein (antigen) that is a molecularly imprinted polymer (MIP, an artificial antibody) modified onto the surface of a silica skeleton in which the
Jose Antonio Toledo-Fernández et al.
Journal of materials science. Materials in medicine, 19(5), 2207-2213 (2007-12-01)
Organic-inorganic hybrid materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS), methyltrimethoxysilane (MTES), synthetic wollastonite powders and polydimethylsiloxane (PDMS) in an ethanol solution. Aerogels were prepared from acid hydrolysis of TEOS and MTES with different volume ratio in ethanol, followed

Articles

Deposition Grade Silanes, fully characterized by chemical analysis and nuclear magnetic resonance (NMR) with greater than 98% purity, for Sol-Gel Processes.

atomic layer deposition (ALD), microelectronics, Mo:Al2O3 films, nanocomposite coating, photovoltaics, semiconductor devices, W:Al2O3 films, composite films, layer-by-layer

Silica is a very popular inorganic nanomaterial used in a wide range of applications including fillers for rubber, catalyst supports, separation media, carriers in food and agriculture, and abrasive/anticaking agents in cosmetics. It is also widely believed to be an important material for biomedical applications for following reasons.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service