Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

634689

Sigma-Aldrich

Strontium titanate

single crystal substrate, <100>

Synonym(s):

Strontium titanium trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SrTiO3
CAS Number:
Molecular Weight:
183.49
EC Number:
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

Quality Level

form

crystalline (cubic (a=3.905 Å))

dielectric constant

~300

hardness

6 (, Mohs)

reaction suitability

reagent type: catalyst
core: titanium

size

10 mm × 10 mm × 0.5 mm

mp

2060 °C (lit.)
2080 °C

density

4.81 g/mL at 25 °C (lit.)
5.175 g/mL at 25 °C

semiconductor properties

<100>

SMILES string

[Sr++].[O-][Ti]([O-])=O

InChI

1S/3O.Sr.Ti/q;2*-1;+2;

InChI key

VEALVRVVWBQVSL-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Physical properties

Loss Tangent at 10GHz: ~5 x 10-4 @ 300K, ~3 x 10-4 @ 77K; Thermal expansion: 10.4 (x 10-6/°C)

Physical form

cubic (a = 3.905 Å)

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

634689-1EA:
634689-BULK:
634689-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

S A Pauli et al.
Physical review letters, 106(3), 036101-036101 (2011-03-17)
The evolution of the atomic structure of LaAlO_{3} grown on SrTiO_{3} was investigated using surface x-ray diffraction in conjunction with model-independent, phase-retrieval algorithms between two and five monolayers film thickness. A depolarizing buckling is observed between cation and oxygen positions
Claudia Cantoni et al.
Advanced materials (Deerfield Beach, Fla.), 24(29), 3952-3957 (2012-06-20)
Using state-of-the-art, aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for an intrinsic electronic reconstruction at the LAO/STO interface is shown. Simultaneous measurements of interfacial electron density and system polarization are crucial
Min Zhang et al.
Optics express, 20(6), 5936-5941 (2012-03-16)
In this letter, TiO₂ nanocrystalline film was prepared on SrTiO₃ (001) substrate to form an n-n heterojunction active layer. Interdigitated Au electrodes were deposited on the top of TiO₂ film to fabricate modified HMSM (heterojunction metal-semiconductor-metal) ultraviolet photodetector. At 10
Dong Hun Kim et al.
ACS combinatorial science, 14(3), 179-190 (2012-02-23)
Combinatorial pulsed laser deposition (CPLD) using two targets was used to produce a range of transition metal-substituted perovskite-structured Sr(Ti(1-x)M(x))O(3-δ) films on buffered silicon substrates, where M = Fe, Cr, Ni and Mn and x = 0.05-0.5. CPLD produced samples whose
Ariando et al.
Nature communications, 2, 188-188 (2011-02-10)
There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPS) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety

Articles

A hard disk drive (HDD) is a data storage device that stores digital information by magnetizing nanosized magnets on flat disks and retrieves data by sensing the resulting magnetic field.

Building and Engineering Micro/Nano Architectures of Single-Walled Carbon Nanotubes for Electronic Applications

Spin-based electronic (spintronic) devices offer significant improvement to the limits of conventional charge-based memory and logic devices which suffer from high power usage, leakage current, performance saturation, and device complexity.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service