Skip to Content
Merck
All Photos(3)

Documents

Safety Information

327395

Sigma-Aldrich

Germanium

powder, −100 mesh, ≥99.999% trace metals basis

Synonym(s):

Elemental germanium

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ge
CAS Number:
Molecular Weight:
72.64
EC Number:
MDL number:
UNSPSC Code:
12141716
PubChem Substance ID:
NACRES:
NA.23

Assay

≥99.999% trace metals basis

form

powder

resistivity

53 Ω-cm, 20°C

particle size

−100 mesh

bp

2830 °C (lit.)

mp

937 °C (lit.)

density

5.35 g/mL at 25 °C (lit.)

SMILES string

[Ge]

InChI

1S/Ge

InChI key

GNPVGFCGXDBREM-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

The product can serve as one of the precursors for the formation of highly porous ZrO2:Tb3+ nanophosphor with excellent tunable photoluminescence and photocatalytic activities.

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 2 - Flam. Sol. 1 - Repr. 2 - STOT RE 2 Oral

Target Organs

Kidney

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 2: Flammable solids
Metal powder
Hazardous rank II
1st combustible solid

JAN Code

327395-5G:
327395-25G:
327395-BULK:
327395-VAR:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate
Tiwari N, et al.
Journal of Radiation Research and Applied Sciences, 7(4), 542-549 (2014)
Phase transformation of ZrO 2: Tb 3+ nanophosphor: Color tunable photoluminescence and photocatalytic activities.
Vidya YS, et al.
J. Alloy Compounds, 622, 86-96 (2015)
Lu Dai et al.
Nanoscale, 5(3), 971-976 (2012-12-15)
The controllable fabrication of self-scrolling SiGe/Si/Cr helical nanoribbons on Si(111) substrates is investigated. The initial lateral etching profile of the Si(111) substrates shows a 2-fold rotational symmetry using 4% ammonia solution, which provides guidance for initial scrolling of one-end-fixed nanoribbons
W Streyer et al.
Optics express, 21(7), 9113-9122 (2013-04-11)
We demonstrate strong-to-perfect absorption across a wide range of mid-infrared wavelengths (5-12µm) using a two-layer system consisting of heavily-doped silicon and a thin high-index germanium dielectric layer. We demonstrate spectral control of the absorption resonance by varying the thickness of
Maurizio Mattesini et al.
Journal of physics. Condensed matter : an Institute of Physics journal, 25(3), 035601-035601 (2012-12-12)
The magnetic properties, electronic band structure and Fermi surfaces of the hexagonal Cr(2)GeC system have been studied by means of both generalized gradient approximation (GGA) and the +U corrected method (GGA + U). The effective U value has been computed within the

Articles

Technologies are an integral part of our lives and we rely on them for such things as communication, heating and cooling, transportation, and construction. Improvements to technologies have made what they do for us more precise, automated, efficient, and powerful.

The price of tellurium, a key component in many thermoelectric materials, has risen in recent years, leading to the search for more cost-effective substitutes. This article presents silicide materials as a cheaper potential alternative.

In recent years, the price of tellurium, a key component in the bestperforming thermoelectric materials, has increased significantly, leading to the question, “Is it economically viable to produce thermoelectric generators on an industrial scale?

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service