Skip to Content
Merck
All Photos(3)

Key Documents

Safety Information

264032

Sigma-Aldrich

Indium

powder, −100 mesh, 99.99% trace metals basis

Synonym(s):

Indium element

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
In
CAS Number:
Molecular Weight:
114.82
EC Number:
MDL number:
UNSPSC Code:
12141719
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

<0.01 mmHg ( 25 °C)

Assay

99.99% trace metals basis

form

powder

resistivity

8.37 μΩ-cm

particle size

−100 mesh

mp

156.6 °C (lit.)

density

7.3 g/mL at 25 °C (lit.)

SMILES string

[In]

InChI

1S/In

InChI key

APFVFJFRJDLVQX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Indium,a rare and stable element, exhibits exceptional properties such as high thermaland electrical conductivity. It finds application in diverse alloys, batteryproduction, and the synthesis of indium tin oxide, essential for transparentelectrodes in LCDs and touchscreens. Additionally, Indium is utilized in theproduction of solar cells, LEDs, and other optoelectronic devices.

Application


  • Indium-containing semiconductors: Discusses the role of indium in semiconductor technology, relevant for both academia and material science, focusing on its application in indium-tin oxide and other indium compounds (Schwarz‐Schampera, 2014).

  • Recovery of indium from liquid crystal displays: This article presents methods for the recovery of indium from waste electronics, an area of significant interest for sustainable chemistry and materials science (Rocchetti et al., 2016).

  • The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants: Explores the chemical properties and reactions of indium in various oxidation states, relevant to environmental and materials chemistry (Detweiler et al., 2016).

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 4 Inhalation - Eye Irrit. 2 - Flam. Sol. 1 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 3

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

PRTR

Class I Designated Chemical Substances

FSL

Group 2: Flammable solids
Metal powder
Hazardous rank II
1st combustible solid

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

264032-BULK:
264032-5G:4548173934822
264032-25G:4548173934815
264032-VAR:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A facile synthesis of 7-amino-3-desacetoxycephalosporanic acid derivatives by indium-mediated reduction of 3-iodomethylcephems in aqueous media.
Chae H, et al.
Tetrahedron Letters, 41(20), 3899-3901 (2000)
Ching-Hwa Ho et al.
ACS applied materials & interfaces, 5(6), 2269-2277 (2013-03-05)
The surface formation oxide assists of visible to ultraviolet photoelectric conversion in α-In2Se3 hexagonal microplates has been explored. Hexagonal α-In2Se3 microplates with the sizes of 10s to 100s of micrometers were synthesized and prepared by the chemical vapor transport method
Juan Zhou et al.
Chemical communications (Cambridge, England), 49(22), 2237-2239 (2013-02-12)
A reduced graphene oxide (RGO)-ZnIn(2)S(4) nanosheet composite was successfully synthesized via an in situ controlled growth process. The as-obtained RGO-ZnIn(2)S(4) composite showed excellent visible light H(2) production activity in the absence of noble metal cocatalysts.
Annick Bay et al.
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed

Articles

Solid state and materials chemistry have made a tremendous impact and have experienced growth in recent years, particularly for rare earthcontaining materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service