Skip to Content
Merck
All Photos(1)

Documents

930695

Sigma-Aldrich

4-Aminomethyl-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione hydrochloride

≥95%

Synonym(s):

1H-Isoindole-1,3(2H)-dione, 4-(aminomethyl)-2-(2,6-dioxo-3-piperidinyl) hydrochloride

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C14H13N3O4 · xHCl
CAS Number:
Molecular Weight:
287.27 (free base basis)
MDL number:
UNSPSC Code:
12352101
NACRES:
NA.26

Quality Level

Assay

≥95%

form

powder

reaction suitability

reagent type: ligand

functional group

amine

storage temp.

2-8°C

SMILES string

NCC1=C(C(N(C2CCC(NC2=O)=O)C3=O)=O)C3=CC=C1

Application

4-Aminomethyl-2-(2,6-dioxopiperidin-3-yl)isoindole-1,3-dione hydrochloride is a functionalized Cereblon ligand used for development of protein degrader building blocks. Contains a terminal amine group, allowing rapid conjugation of carboxyl containing linkers. A basic building block for development of a protein degrader library.

Legal Information

PROTAC® is a registered trademark of Arvinas Operations, Inc., and is used under license.
PROTAC is a registered trademark of Arvinas Operations, Inc., and is used under license

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Hazard Classifications

Repr. 1B

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Daniel P Bondeson et al.
Annual review of pharmacology and toxicology, 57, 107-123 (2016-10-13)
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service