Skip to Content
Merck
  • Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry.

Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry.

Journal of the American Chemical Society (2015-04-09)
Abdelaziz Al Ouahabi, Laurence Charles, Jean-François Lutz
ABSTRACT

Sequence-defined non-natural polyphosphates were prepared using iterative phosphoramidite protocols on a polystyrene solid support. Three monomers were used in this work: 2-cyanoethyl (3-dimethoxytrityloxy-propyl) diisopropylphosphoramidite (0), 2-cyanoethyl (3-dimethoxytrityloxy-2,2-dimethyl-propyl) diisopropylphosphoramidite (1), and 2-cyanoethyl (3-dimethoxytrityloxy-2,2-dipropargyl-propyl) diisopropylphosphoramidite (1'). Phosphoramidite coupling steps allowed rapid synthesis of homopolymers and copolymers. In particular, the comonomers (0, 1), (0, 1'), and (1, 1') were used to synthesize sequence-encoded copolymers. It was found that long encoded sequences could be easily built using phosphoramidite chemistry. ESI-HRMS, MALDI-HRMS, NMR, and size exclusion chromatography analyses indicated the formation of monodisperse polymers with controlled comonomer sequences. The polymers obtained with the comonomers (0, 1') and (1, 1') were also modified by copper-catalyzed azide-alkyne cycloaddition with a model azide compound, namely 11-azido-3,6,9-trioxaundecan-1-amine. (1)H and (13)C NMR analysis evidenced quantitative modification of the alkyne side-chains of the monodisperse copolymers. Thus, the molecular structure of the coding monomer units can be easily varied after polymerization. Altogether, the present results open up interesting avenues for the design of information-containing macromolecules.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-(Dimethylamino)pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
DCC, 1.0 M in methylene chloride
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
2,5-Dihydroxybenzoic acid, 98%
Sigma-Aldrich
N,N-Diisopropylethylamine, purified by redistillation, 99.5%
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N
Sigma-Aldrich
Pyridine, ≥99%
Sigma-Aldrich
N,N-Diisopropylethylamine, ReagentPlus®, ≥99%
Sigma-Aldrich
DCC, 99%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
4,4′-Dimethoxytrityl chloride, 95%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
4,4′-Dimethoxytriphenylmethyl chloride, ≥97.0% (HPLC)
Supelco
2,5-Dihydroxybenzoic acid, matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
Toluene, LR, ≥99%
Sigma-Aldrich
Toluene, AR, ≥99.5%
Sigma-Aldrich
Toluene, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol solution, (Methanol:Dimethyl sulfoxide 1:1 (v/v))
Dichloromethane, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Propargyl bromide solution, 80 wt. % in toluene, contains 0.3% magnesium oxide as stabilizer
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Propargyl bromide solution, 80 wt. % in xylene
Sigma-Aldrich
Trichloroacetic acid, suitable for electrophoresis, suitable for fixing solution (for IEF and PAGE gels), ≥99%
Sigma-Aldrich
Trichloroacetic acid, ≥99.0% (titration)