Skip to Content
Merck
All Photos(3)

Key Documents

723010

Sigma-Aldrich

2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid

98% (HPLC)

Synonym(s):

2-(Dodecylthiocarbonothioylthio)-2-methylpropanoic acid, S-Dodecyl-S′-(α,α′-dimethyl-α′′-acetic acid)trithiocarbonate, DDMAT

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C17H32O2S3
CAS Number:
Molecular Weight:
364.63
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

98% (HPLC)

form

powder

mp

57-63 °C

storage temp.

2-8°C

SMILES string

CCCCCCCCCCCCSC(=S)SC(C)(C)C(O)=O

InChI

1S/C17H32O2S3/c1-4-5-6-7-8-9-10-11-12-13-14-21-16(20)22-17(2,3)15(18)19/h4-14H2,1-3H3,(H,18,19)

InChI key

DZFGVGDQHQHOKZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Need help choosing the correct RAFT Agent? Please consult the RAFT Agent to Monomer compatibility table.

Application

RAFT agent for controlled radical polymerization; especially suited for the polymerization of styrene, acrylate and acrylamide monomers. Chain Transfer Agent (CTA)

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jun Akimoto et al.
ACS omega, 4(15), 16344-16351 (2019-10-17)
A thermoresponsive ABA triblock copolymer bearing an aldehyde group on the thermoresponsive A segments was synthesized. The polymer formed a micellar assembly due to the hydrophobic interactions of the thermoresponsive segment above the lower critical solution temperature (LCST). In contrast
Wenyan Wang et al.
Carbohydrate polymers, 207, 239-245 (2019-01-03)
This study reports on eco-friendly graft polymerization approach for the modification of a cellulosic material via combination between enzymatic catalysis and reversible addition-fragmentation chain transfer polymerization (RAFT). Polyacrylamide (PAM) was polymerized on a cellulosic filter paper via horseradish peroxidase (HRP)-initiated
Chloé Grazon et al.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 18(5), 1156-1165 (2019-02-26)
A new ratiometric fluorescent pH nanosensor is presented. It is based on ultrabright nanoparticles containing two spatially separated fluorophores: BODIPY covalently linked to the polystyrene core and fluorescein grafted to the nanoparticle shell. The nanoparticles comprise a large number (≥2500)
Haichao Duan et al.
Nanoscale, 10(26), 12487-12496 (2018-06-22)
Well-dispersed ultrafine palladium nanoparticles supported by reduced graphene oxide functionalized with catechol-terminated thermo-responsive block copolymer (PdNPs@BPrGO) were successfully constructed for highly efficient heterogeneous catalytic reduction. We first synthesized a novel temperature-responsive episulfide-containing double-hydrophilic diblock copolymer, poly(poly(ethylene glycol) methyl ether methacrylate-co-2,3-epithiopropyl
Barbara L Ekerdt et al.
Advanced healthcare materials, 7(12), e1800225-e1800225 (2018-05-03)
Human pluripotent stem cells (hPSCs) offer considerable potential for biomedical applications including drug screening and cell replacement therapies. Clinical translation of hPSCs requires large quantities of high quality cells, so scalable methods for cell culture are needed. However, current methods

Articles

A series of polymerization were carried out using RAFT agents and monomers yielding well-defined polymers with narrow molecular weight distributions. The process allows radical-initiated growing polymer chains to degeneratively transfer reactivity from one to another through the use of key functional groups (dithioesters, trithiocarbonates, xanthates and dithiocarbamates). RAFT agents help to minimize out-of-control growth and prevent unwanted termination events from occurring, effectively controlling polymer properties like molecular weight and polydispersity. RAFT agents are commercially available. RAFT does not use any cytotoxic heavy metal components (unlike ATRP).

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Over the past two decades, the rapid advance of controlled living polymerization (CLP) techniques.

The modification of biomacromolecules, such as peptides and proteins, through the attachment of synthetic polymers has led to a new family of highly advanced biomaterials with enhanced properties.

See All

Protocols

RAFT (Reversible Addition-Fragmentation chain Transfer) is a form of living radical polymerization involving conventional free radical polymerization of a substituted monomer in the presence of a suitable chain transfer (RAFT) reagent.

We present an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service