Skip to Content
Merck
All Photos(1)

Key Documents

EHU077831

Sigma-Aldrich

MISSION® esiRNA

targeting human HOXA9

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105324
NACRES:
NA.51

description

Powered by Eupheria Biotech

Quality Level

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

ATGCACCCATTGTGATTGTGGAAGATAGAATTCAATTTGAACTCAGGTTGTTTATGAGGGGAAAAAAACAGTTGCATAGAGTATAGCTCTGTAGTGGAATATGTCTTCTGTATAACTAGGCTGTTAACCTATGATTGTAAAGTAGCTGTAAGAATTTCCCAGTGAAATAAAAAAAAATTTTAAGTGTTCTCGGGGATGCATAGATTCATCATTTTCTCCACCTTAAAAATGCGGGCATTTAAGTCTGTCCATTATCTATATAGTCCTGTCTTGTCTATTGTATATATAATCTATATGATTAAAGAAAATATGCATAATCAGACAAGCTTGAATATTGTTTTTGCACCAGACGAACAGTGAGGAAATTCGGAGCTATACATATGTGCAGAAGGTTACTACCTAGGGTTTATGCTTAATTTTAATTGGAGGAAATGAATGCTGA

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Gene Information

General description

MISSION® esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

10 - Combustible liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Xiaoping Liu et al.
Placenta, 51, 38-48 (2017-03-16)
Functional placenta formation is crucially dependent on extravillous trophoblast migration and invasion. EPHB4 has been identified to play a negative but important role in regulating trophoblast biological function, whereas the upstream regulation mechanism remains unknown. As reported, there is a
Jun Ni et al.
Journal of receptor and signal transduction research, 39(5-6), 399-406 (2019-12-27)
Purpose: To investigate the possible mechanism of miR-210 involved in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells under hypoxia. Methods: In this study, we used the following approaches. Hypoxic microenvironment was stimulated in vitro, and the CCK-8 assay was used to
Seong-Lan Yu et al.
Molecular carcinogenesis, 55(12), 1915-1926 (2015-11-21)
MicroRNAs (miRNAs) are recognized as crucial posttranscriptional regulators of gene expression, and play critical roles as oncogenes or tumor suppressors in various cancers. Here, we show that miR-196b is upregulated in mesenchymal-like-state non-small cell lung cancer (NSCLC) cells and lung
Yilin Liu et al.
International journal of oncology, 54(5), 1809-1820 (2019-03-01)
Several microRNAs (miRNAs or miRs) that regulate a variety of cancer‑related events are dysregulated in osteosarcoma (OS). An exploration of the specific roles of miRNAs in OS is crucial for the identification of suitable therapeutic targets. Previous studies have shown that

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service