Skip to Content
Merck
All Photos(3)

Key Documents

412988

Sigma-Aldrich

Carbon nanotube, multi-walled

as-produced cathode deposit, >7.5% MWCNT basis, O.D. × L 7-15 nm × 0.5-10 μm, avg. no. of layers, 5 ‑ 20

Synonym(s):

MWCNT, MWNT, Multiwall carbon nanotube

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
UNSPSC Code:
12352103
NACRES:
NA.23

Quality Level

Assay

>7.5% MWCNT basis

form

powder

feature

avg. no. of layers 5 ‑ 20

composition

carbon content, >99% TGA

O.D. × L

7-15 nm × 0.5-10 μm

mp

3652-3697 °C (lit.)

density

~2.1 g/mL at 25 °C (lit.)

SMILES string

[C]

InChI

1S/C

Looking for similar products? Visit Product Comparison Guide

General description

These are catalyst free arc-discharge multiwall carbon nanotubes (MWNTs). Multi-walled carbon nanotube core surrounded by a fused carbon shell, the remainder being multi-layer polygonal carbon nanoparticles and amorphous and graphitic carbon nanoparticles. It contains approximately 5-20 graphitic layers.

Application

Carbon nanotube, multi-walled (MWNT) belongs to the class of carbonaceous materials with excellent thermo-mechanical and electrochemical properties. This material can be used in a variety of sustainable energy applications such as solar cells, photocatalysis, biosensor, gas sensor, supercapacitor and as a filler that acts as a reinforcement to improve the mechanical property of composites.
MWNTs were used in the comparative study of oxidative treatment to carbon nanomaterials. MWNTs were used as a reinforcement in CNT/SiC nano composites. 2

Physical form

Approximately 5-20 graphitic layers. Multi-walled carbon nanotube core surrounded by a fused carbon shell, the remainder being multi-layer polygonal carbon nanoparticles and amorphous and graphitic carbon nanoparticles.

Preparation Note

Electric Arc Discharge Method

Other Notes

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material
Salzmann CG, et al.
Journal of Materials Chemistry, 20, 314-319 (2010)
Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes
Li GY, et al.
Carbon, 43(6), 1239-1245 (2005)
Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O
Xia X, et al.
Carbon, 45(4), 717-721 (2007)

Articles

Carbon nanotubes (CNTs) have received much attention since their discovery in 1991 by Sumio lijima1 due to their excellent mechanical, electrical, and optical properties.

A nanocomposite is typically defined as a mixture between a host material (e.g., polymer matrix) and nanofillers with at least one dimension of less than 100 nm.

Single-walled carbon nanotubes (SWCNTs) are promising materials for use in the active channel of field-effect transistors (FETs), photoabsorbing layers of solar cells and photodetectors because of their ultrafast charge transport mobility.

Building and Engineering Micro/Nano Architectures of Single-Walled Carbon Nanotubes for Electronic Applications

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service