- Postsynthetic conjugation of RNA to carboxylate and dicarboxylate molecules.
Postsynthetic conjugation of RNA to carboxylate and dicarboxylate molecules.
Nucleosides, nucleotides & nucleic acids (2015-10-01)
Yossi Shemesh, Eylon Yavin
PMID26422297
ABSTRACT
Carboxylates and dicarboxylates are important phosphate mimics. Herein, we present a simple synthetic route for the preparation of RNA carboxylate/dicarboxylate conjugates, starting from suitably protected NH2- and COOH-containing molecules that are coupled to the RNA on the solid support. The key point in our method was the use of trimethylsilylethanol (TMSE-OH) protecting group, which is removed simultaneously with the silyl protecting group on the 2'-OH of the RNA ribose (e.g. t-Butyldimethylsilyl) during the final RNA cleavage/deprotection steps. The usefulness of this method was demonstrated by preparing different RNA-phosphate mimics oligos.
MATERIALS
Product Number
Brand
Product Description
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Palladium hydroxide on carbon, extent of labeling: 20 wt. % loading (dry basis), matrix carbon, wet support
Sigma-Aldrich
Palladium hydroxide on carbon, extent of labeling: 20 wt. % loading (dry basis), matrix carbon, wet support