Skip to Content
Merck
All Photos(3)

Key Documents

257303

Sigma-Aldrich

1,2,3,4-Butanetetracarboxylic acid

99%

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[-CH(CO2H)CH2CO2H]2
CAS Number:
Molecular Weight:
234.16
Beilstein:
1729167
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99%

form

powder

mp

195-197 °C (dec.) (lit.)

SMILES string

OC(=O)CC(C(CC(O)=O)C(O)=O)C(O)=O

InChI

1S/C8H10O8/c9-5(10)1-3(7(13)14)4(8(15)16)2-6(11)12/h3-4H,1-2H2,(H,9,10)(H,11,12)(H,13,14)(H,15,16)

InChI key

GGAUUQHSCNMCAU-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

1,2,3,4-Butanetetracarboxylic acid (BTCA) is utilized as a cross-linking agent and as a building block for the synthesis of specialized polymers for the formulation of resins, polymers, coatings, and adhesives.

Application

1,2,3,4-Butanetetracarboxylic acid (BTCA) can be used as a cross-linking agent:
  • To functionalize cotton fabric. BTCA-treated fabric shows improved anti-pilling, wrinkle resistance, and fire-retardant properties.
  • To fabricate flexible, free-standing nanocellulose membranes. The cross-linking with BTCA improves water stability and ionic conductivity of membranes.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Mattia Alberto Lucchini et al.
ACS applied materials & interfaces, 10(35), 29599-29607 (2018-08-08)
In this work, we report a versatile approach for the development of an in-flow purification water system under solar illumination. Cellulose nanofibrils (CNFs) were impregnated with TiO2 nanoparticles using water as a solvent to obtain hybrid CNF/TiO2 monoliths with 98%
Limin Guo et al.
Carbohydrate polymers, 179, 333-340 (2017-11-08)
Cellulose nanofibril (CNF) aerogel is highly flammable and its mechanical strength is very soft, which is unfavourable due to safety concerns and impractical when used as the thermal insulation material. In this work, we used N-methylol dimethylphosphonopropionamide (MDPA) and 1,2,3,4-butanetetracarboxylic
Solmaz Heydarifard et al.
Carbohydrate polymers, 181, 1086-1092 (2017-12-20)
Development of a foam-formed cellulose filter paper with high wet strength was carried out for application as a drinking water filter. The wet strength and antimicrobial activity of cellulose foam paper against several bacteria species (Bacillus subtilis MTCC 441 (Gram
Asli Celebioglu et al.
Scientific reports, 7(1), 7369-7369 (2017-08-09)
Water pollution is a serious concern for public health and environment in today's world; hence, there exists a strong demand to develop cost-effective, sustainable and eco-friendly membranes. Here, we produce a highly efficient molecular filter membrane based on bio-renewable material;
Peipei Wang et al.
Carbohydrate polymers, 218, 103-111 (2019-06-22)
Environmentally friendly, sustainable, and high-performance thermal insulators are in high demand. Petroleum-based insulator foams usually have high thermal conductivity and pose health hazards. Here, we report ultralight composite foams that are highly strong, elastic, and super-insulating. The foams are composed

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service