Skip to Content
Merck
All Photos(1)

Key Documents

719900

Sigma-Aldrich

Resomer® RG 504 H, Poly(D,L-lactide-co-glycolide)

acid terminated, lactide:glycolide 50:50, Mw 38,000-54,000

Synonym(s):

PLGA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[C3H4O2]x[C2H2O2]y
CAS Number:
UNSPSC Code:
12162002
NACRES:
NA.23

Quality Level

form

amorphous

feed ratio

lactide:glycolide 50:50

mol wt

Mw 38,000-54,000

degradation timeframe

<3 months

viscosity

0.45-0.60 dL/g, 0.1 % (w/v) in chloroform(25 °C, Ubbelohde) (size 0c glass capillary viscometer)

transition temp

Tg 46-50 °C

storage temp.

2-8°C

InChI

1S/C6H8O4.C4H4O4/c1-3-5(7)10-4(2)6(8)9-3;5-3-1-7-4(6)2-8-3/h3-4H,1-2H3;1-2H2

InChI key

LCSKNASZPVZHEG-UHFFFAOYSA-N

Application

Resomer® RG 504 H, Poly(D, L-Lactide-co-Glycolide) can be used to fabricate a biodegradable hemostyptic device for safe and locally controlled release of thrombin which promotes local blood clot formation.

It can be used to preparepolymer nanospheres for encapsulating CuO, to form stimuli-responsivemultifunctional nanocarriers.

Legal Information

Product of Evonik
RESOMER is a registered trademark of Evonik Rohm GmbH

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hossein Kamali et al.
Materials science & engineering. C, Materials for biological applications, 96, 561-575 (2019-01-05)
An in situ forming gel (ISFG) of buprenorphine (BP) was prepared using PLGA-PEG-PLGA (triblock) and N‑methyl‑2‑pyrrolidone as solvent for decreasing the initial burst release. Supercritical CO2 method was used for ring opening polymerization of triblock. The optimum formulation of ISFG
Niranjan G Kotla et al.
Nanomaterials (Basel, Switzerland), 9(9) (2019-09-05)
There is a pressing clinical need for advanced colon-specific local drug delivery systems that can provide major advantages in treating diseases associated with the colon, such as inflammatory bowel disease (IBD) and colon cancer. A precise colon targeted drug delivery
Rongcai Liang et al.
International journal of pharmaceutics, 454(1), 344-353 (2013-07-23)
Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative
Shu-Chun Chuang et al.
Parasites & vectors, 6, 34-34 (2013-02-13)
Current development efforts of subunit vaccines against Toxoplasma gondii, the etiological agent of toxoplasmosis, have been focused mainly on tachyzoite surface antigen 1 (SAG1). Since microparticles made from poly (lactide-co-glycolide) (PLG) polymers have been developed as safe, potent adjuvants or
Vanna Sanna et al.
International journal of nanomedicine, 7, 5501-5516 (2012-10-25)
Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may

Articles

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

The world of commercial biomaterials has stagnated over the past 30 years as few materials have successfully transitioned from the bench to clinical use. Synthetic aliphatic polyesters have continued to dominate the field of resorbable biomaterials due to their long history and track record of approval with the U.S. Food and Drug Administration (FDA).

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

Innovations in polymer technology have had a significant impact on the advancement of novel drug delivery systems.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service