跳转至内容
Merck
  • SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation.

SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation.

Development (Cambridge, England) (2017-06-18)
Mari S Lehti, Fu-Ping Zhang, Noora Kotaja, Anu Sironen
摘要

Sperm differentiation requires specific protein transport for correct sperm tail formation and head shaping. A transient microtubular structure, the manchette, appears around the differentiating spermatid head and serves as a platform for protein transport to the growing tail. Sperm flagellar 2 (SPEF2) is known to be essential for sperm tail development. In this study we investigated the function of SPEF2 during spermatogenesis using a male germ cell-specific Spef2 knockout mouse model. In addition to defects in sperm tail development, we observed a duplication of the basal body and failure in manchette migration resulting in an abnormal head shape. We identified cytoplasmic dynein 1 and GOLGA3 as novel interaction partners for SPEF2. SPEF2 and dynein 1 colocalize in the manchette and the inhibition of dynein 1 disrupts the localization of SPEF2 to the manchette. Furthermore, the transport of a known SPEF2-binding protein, IFT20, from the Golgi complex to the manchette was delayed in the absence of SPEF2. These data indicate a possible novel role of SPEF2 as a linker protein for dynein 1-mediated cargo transport along microtubules.

材料
货号
品牌
产品描述

Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-15, ascites fluid
Sigma-Aldrich
抗乙酰化微管蛋白抗体,小鼠单克隆 小鼠抗, clone 6-11B-1, purified from hybridoma cell culture
Sigma-Aldrich
Anti-SPEF2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution