跳转至内容
Merck
  • Binding of natural and synthetic polyphenols to human dihydrofolate reductase.

Binding of natural and synthetic polyphenols to human dihydrofolate reductase.

International journal of molecular sciences (2010-01-08)
Luís Sánchez-del-Campo, Magalí Sáez-Ayala, Soledad Chazarra, Juan Cabezas-Herrera, José Neptuno Rodríguez-López
摘要

Dihydrofolate reductase (DHFR) is the subject of intensive investigation since it appears to be the primary target enzyme for antifolate drugs. Fluorescence quenching experiments show that the ester bond-containing tea polyphenols (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) are potent inhibitors of DHFR with dissociation constants (K(D))of 0.9 and 1.8 microM, respectively, while polyphenols lacking the ester bound gallate moiety [e.g., (-)-epigallocatechin (EGC) and (-)-epicatechin (EC)] did not bind to this enzyme. To avoid stability and bioavailability problems associated with tea catechins we synthesized a methylated derivative of ECG (3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin; TMECG), which effectively binds to DHFR (K(D) = 2.1 microM). In alkaline solution, TMECG generates a stable quinone methide product that strongly binds to the enzyme with a K(D) of 8.2 nM. Quercetin glucuronides also bind to DHFR but its effective binding was highly dependent of the sugar residue, with quercetin-3-xyloside being the stronger inhibitor of the enzyme with a K(D) of 0.6 microM. The finding that natural polyphenols are good inhibitors of human DHFR could explain the epidemiological data on their prophylactic effects for certain forms of cancer and open a possibility for the use of natural and synthetic polyphenols in cancer chemotherapy.

材料
货号
品牌
产品描述

Sigma-Aldrich
二氢叶酸还原酶 人, ≥80% (SDS-PAGE), recombinant, expressed in E. coli, ≥1 units/mg protein
Sigma-Aldrich
3,4,5-三甲氧基苯甲酰氯, 98%