跳转至内容
Merck
  • ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation.

ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation.

Autophagy (2015-06-18)
Huiwen Song, Jun Pu, Lin Wang, Lihua Wu, Jianmin Xiao, Qigong Liu, Jun Chen, Min Zhang, Yang Liu, Mingke Ni, Jinggang Mo, Yunliang Zheng, Deli Wan, XiongJiu Cai, Yaping Cao, Weiyi Xiao, Lei Ye, Enyuan Tu, Zhihai Lin, Jianxin Wen, Xiaoling Lu, Jian He, Yi Peng, Jing Su, Heng Zhang, Yongxiang Zhao, Meihua Lin, Zhiyong Zhang
摘要

Recent studies have shown that the phosphorylation and dephosphorylation of ULK1 and ATG13 are related to autophagy activity. Although ATG16L1 is absolutely required for autophagy induction by affecting the formation of autophagosomes, the post-translational modification of ATG16L1 remains elusive. Here, we explored the regulatory mechanism and role of ATG16L1 phosphorylation for autophagy induction in cardiomyocytes. We showed that ATG16L1 was a phosphoprotein, because phosphorylation of ATG16L1 was detected in rat cardiomyocytes during hypoxia/reoxygenation (H/R). We not only demonstrated that CSNK2 (casein kinase 2) phosphorylated ATG16L1, but also identified the highly conserved Ser139 as the critical phosphorylation residue for CSNK2. We further established that ATG16L1 associated with the ATG12-ATG5 complex in a Ser139 phosphorylation-dependent manner. In agreement with this finding, CSNK2 inhibitor disrupted the ATG12-ATG5-ATG16L1 complex. Importantly, phosphorylation of ATG16L1 on Ser139 was responsible for H/R-induced autophagy in cardiomyocytes, which protects cardiomyocytes from apoptosis. Conversely, we determined that wild-type PPP1 (protein phosphatase 1), but not the inactive mutant, associated with ATG16L1 and antagonized CSNK2-mediated phosphorylation of ATG16L1. Interestingly, one RVxF consensus site for PPP1 binding in the C-terminal tail of ATG16L1 was identified; mutation of this site disrupted its association with ATG16L1. Notably, CSNK2 also associated with PPP1, but ATG16L1 depletion impaired the interaction between CSNK2 and PPP1. Collectively, these data identify ATG16L1 as a bona fide physiological CSNK2 and PPP1 substrate, which reveals a novel molecular link from CSNK2 to activation of the autophagy-specific ATG12-ATG5-ATG16L1 complex and autophagy induction.

材料
货号
品牌
产品描述

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
DL-二硫代苏糖醇 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
总蛋白提取细胞裂解缓冲液
Sigma-Aldrich
2-巯基乙醇, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
单克隆抗-FLAG® M2 小鼠抗, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
氯化镁 溶液, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
2-巯基乙醇, ≥99.0%
Sigma-Aldrich
氯化钙 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
胶原酶 来源于溶组织梭菌, for general use, Type I, ≥125 CDU/mg solid
Sigma-Aldrich
脱氧核糖核酸酶 I 来源于牛胰腺, Type IV, lyophilized powder, ≥2,000 Kunitz units/mg protein
Sigma-Aldrich
氯化镁, anhydrous, ≥98%
Sigma-Aldrich
咪唑, ReagentPlus®, 99%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Supelco
DL-二硫代苏糖醇 溶液, 1 M in H2O
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L -还原型谷胱甘肽, ≥98.0%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
胰脂肪酶 来源于猪胰腺, 8 × USP specifications
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture