跳转至内容
Merck
  • Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.

Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.

AAPS PharmSciTech (2014-02-08)
Xiaoyan Yang, Sulabh Patel, Ye Sheng, Dhananjay Pal, Ashim K Mitra
摘要

The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design modules. Experimental designs were used to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett-Burman design for independent variables was first conducted to prescreen various formulation and process variables during the development of NP. Selected primary variables were further optimized by central composite design. This process leads to an optimum formulation with desired EE, particle size, and DL. Contour plots and response surface curves display visual diagrammatic relationships between the experimental responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication time were the critical factors influencing the responses analyzed. Optimized formulation showed EE of 90.6%, particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design methodology can optimize the formulation and process variables to achieve favorable responses for HB-loaded NP.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
乙腈, HPLC Plus, ≥99.9%
Sigma-Aldrich
二氯甲烷, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
二氯甲烷, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
二氯甲烷, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
二氯甲烷, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Supelco
二氯甲烷, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙腈, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙腈 溶液, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Supelco
二氯甲烷, analytical standard