跳转至内容
Merck
  • Structural, optical and sensing properties of novel Eu(III) complexes with furan- and pyridine-based ligands.

Structural, optical and sensing properties of novel Eu(III) complexes with furan- and pyridine-based ligands.

Dalton transactions (Cambridge, England : 2003) (2014-11-06)
Fabio Piccinelli, Marco Bettinelli, Andrea Melchior, Cristian Grazioli, Marilena Tolazzi
摘要

A new family of imine and amine-based racemic ligands containing furan or pyridine as an aromatic donating ring [N,N′-bis(2-pyridylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine, L1; N,N′-bis(2-furanylmethylidene)-1,2-(R,R + S,S)-cyclohexanediamine, L2; N,N′-bis(2-pyridylmethyl)-1,2-(R,R + S,S)-cyclohexanediamine, L3; and N,N′-bis(2-furanylmethyl)-1,2-(R,R + S,S)-cyclohexanediamine, L4] and their trifluoromethanesulphonate (CF3SO3(−), OTf(−)) and nitrate Eu(III) complexes is studied in acetonitrile (AN) solution. The stoichiometry and stabilities of the formed complexes are obtained by means of spectrophotometric titrations: when Eu(III) triflate is used as a starting salt, two mononuclear species (1:1 and 1:2) are detected, while only the 1:1 complex is observed when the nitrate salt is employed. The stability of these complexes, as well as the geometry of their Eu(III) environment, is significantly dependent on the nature of the ligand employed (imine or amine, furan or pyridine-based). DFT calculations show that all donor atoms are coordinated to the metal ion in the 1:1 EuL(L = L1–L4) species and suggest that the higher stability of the complexes with L1 and L2 with respect to L3 and L4 is mostly due to the higher degree of preorganization of the former species. The optical response of the imine-based L1 and L2 Eu complexes, produced by NO3(−) coordination, has been studied in order to assess their application as sensing devices. With both ligands, an increase of the emission intensity on the addition of the nitrate ion is observed. This is higher for the EuL2 complex and underlines the important role of the nature of the heteroaromatic ring. Finally, it is worth noting that an efficient energy transfer process from the ligand to the metal is present in the case of the 1:1 triflate Eu(III) complex with the ligand L1.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
纯乙醇, 200 proof, for molecular biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, HPLC Plus, ≥99.9%
Sigma-Aldrich
纯乙醇, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 190 proof, for molecular biology
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
酒精, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
氮气, ≥99.998%
Sigma-Aldrich
酒精, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
Ethanol 溶液, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
酒精, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
酒精, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
乙腈, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Supelco
10% (v/v) 乙醇标准品, 10 % (v/v) in H2O, analytical standard
Supelco
乙腈, HPLC grade, ≥99.93%
USP
无水酒精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
乙腈, ≥99.8%, suitable for HPLC
Sigma-Aldrich
酒精, ≥99.5%, suitable for HPLC
Sigma-Aldrich
酒精, JIS special grade, 94.8-95.8%
Supelco
乙腈, Pharmaceutical Secondary Standard; Certified Reference Material