- Na(+)-dependent pH regulation by the amitochondriate protozoan parasite Giardia intestinalis.
Na(+)-dependent pH regulation by the amitochondriate protozoan parasite Giardia intestinalis.
Giardia intestinalis is a pathogenic fermentative parasite, which inhabits the gastrointestinal tract of animals and humans. G. intestinalis trophozoites are exposed to acidic fluctuations in vivo and must also cope with acidic metabolic endproducts. In this study, a combination of independent techniques ((31)P NMR spectroscopy, distribution of the weak acid pH marker 5,5-dimethyl-2,4-oxazolidinedione (DMO) and the fluorescent pH indicator 2',7'-bis (carboxyethyl)-5,6-carboxyfluorescein (BCECF)) were used to show that G. intestinalis trophozoites exposed to an extracellular pH range of 6.0--7.5 maintain their cytosolic pH (pH(i)) within the range 6.7--7.1. Maintenance of the resting pH(i) was Na(+)-dependent but unaffected by amiloride (or analogs thereof). Recovery of pH(i) from an intracellular acidosis was also Na(+)-dependent, with the rate of recovery varying with the extracellular Na(+) concentration in a saturable manner (K(m) = 18 mm; V(max) = 10 mm H(+) min(-1)). The recovery of pH(i) from an acid load was inhibited by amiloride but unaffected by a number of its analogs. The postulated involvement of one or more Na(+)/H(+) exchanger(s) in the regulation of pH(i) in G. intestinalis is discussed.