跳转至内容
Merck
  • p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

Journal of colloid and interface science (2009-07-21)
Hongye Zhang, Yun Xie, Zhimin Liu, Ranting Tao, Zhenyu Sun, Kunlun Ding, Guimin An
摘要

Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction.

材料
货号
品牌
产品描述

Sigma-Aldrich
对氨基苯乙酸, 98%