跳转至内容
Merck
  • Inhibition of hydroxyl radical production by lactobionate, adenine, and tempol.

Inhibition of hydroxyl radical production by lactobionate, adenine, and tempol.

Free radical biology & medicine (1995-11-01)
C Charloux, M Paul, D Loisance, A Astier
摘要

Superoxide and hydroxyl free radicals are strongly implicated in the deleterious effects of reperfusion of grafted organs. Iron ions are critical in the Fenton-like reaction that generates oxygen-free radicals from H2O2. Using the ADP/Fe2+/H2O2 .OH-generating system, we demonstrated that components of an organ-preservation solution (Henri Mondor solution): sodium lactobionate, adenine, and a nitroxide radical: 4-hydroxy-2,2,6,6-tetramethylpiperidine-n-oxyl (TEMPOL), showed unexpected inhibition properties on the production of hydroxyl radicals by complexation of Fe2+ for lactobionate and nitroxide or Fe3+ for adenine. This inhibition was 75.5% at 12 mM lactobionate. Moreover, a complete inhibition was observed at 50 mM. At 0.25 mM adenine, the reduction was 14.8% (maximum effect: 34.1%). Henri Mondor solution, at an identical adenine and lactobionate concentration, inhibited the radical production by 91.5%, indicating an additive effect. Nitroxide totally inhibited .OH production by the ADP/Fe2+/H2O2 system (maximum effect: 95.6%) and partially the production by an O2.- generating system (maximum effect: 74.8%). Thus, the association of these three components in preservation solutions would be an original method to limit the reperfusion injury observed in isolated ischemic organs.

材料
货号
品牌
产品描述

Sigma-Aldrich
乳糖酸, 97% (TLC)
Sigma-Aldrich
乳糖酸, ≥97% (TLC), cell impermeant agent