跳转至内容
Merck
  • Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis.

Mechanical Forces Regulate Cardiomyocyte Myofilament Maturation via the VCL-SSH1-CFL Axis.

Developmental cell (2019-09-10)
Ryuichi Fukuda, Felix Gunawan, Radhan Ramadass, Arica Beisaw, Anne Konzer, Sri Teja Mullapudi, Alessandra Gentile, Hans-Martin Maischein, Johannes Graumann, Didier Y R Stainier
摘要

Mechanical forces regulate cell behavior and tissue morphogenesis. During cardiac development, mechanical stimuli from the heartbeat are required for cardiomyocyte maturation, but the underlying molecular mechanisms remain unclear. Here, we first show that the forces of the contracting heart regulate the localization and activation of the cytoskeletal protein vinculin (VCL), which we find to be essential for myofilament maturation. To further analyze the role of VCL in this process, we examined its interactome in contracting versus non-contracting cardiomyocytes and, in addition to several known interactors, including actin regulators, identified the slingshot protein phosphatase SSH1. We show how VCL recruits SSH1 and its effector, the actin depolymerizing factor cofilin (CFL), to regulate F-actin rearrangement and promote cardiomyocyte myofilament maturation. Overall, our results reveal that mechanical forces generated by cardiac contractility regulate cardiomyocyte maturation through the VCL-SSH1-CFL axis, providing further insight into how mechanical forces are transmitted intracellularly to regulate myofilament maturation.

材料
货号
品牌
产品描述

Sigma-Aldrich
3-异丁基-1-甲基黄嘌呤, ≥99% (HPLC), powder
Sigma-Aldrich
单克隆 抗-α-肌动蛋白(肌小节) 小鼠抗, clone EA-53, ascites fluid
Sigma-Aldrich
抗-α-微管蛋白抗体,小鼠单克隆, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
2,3-丁二酮一肟, ≥98%
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
抗纽蛋白抗体,克隆V284, clone V284, Upstate®, from mouse
Supelco
美罗培南三水合物, VETRANAL®, analytical standard
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Vcl