跳转至内容
Merck
  • Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes.

Adenovirus-driven overexpression of proteinases in organ-cultured normal human corneas leads to diabetic-like changes.

Brain research bulletin (2009-10-16)
Mehrnoosh Saghizadeh, Andrei A Kramerov, Yousha Yaghoobzadeh, Jinwei Hu, Julia Y Ljubimova, Keith L Black, Maria G Castro, Alexander V Ljubimov
摘要

Our previous data suggested the involvement of matrix metalloproteinase-10 (MMP-10) and cathepsin F (CTSF) in the basement membrane and integrin changes occurring in diabetic corneas. These markers were now examined in normal human organ-cultured corneas upon recombinant adenovirus (rAV)-driven transduction of MMP-10 and CTSF genes. Fifteen pairs of normal autopsy human corneas were used. One cornea of each pair was transduced with rAV expressing either CTSF or MMP-10 genes. 1-2 x 10(8) plaque forming units of rAV per cornea were added to cultures for 48 h with or without sildenafil citrate. The fellow cornea of each pair received control rAV with vector alone. After 6-10 days additional incubation without rAV, corneas were analyzed by Western blot or immunohistochemistry, or tested for healing of 5-mm circular epithelial wounds caused by topical application of n-heptanol. Sildenafil significantly increased epithelial transduction efficiency, apparently by stimulation of rAV endocytosis through caveolae. Corneas transduced with CTSF or MMP-10 genes or their combination had increased epithelial immunostaining of respective proteins compared to fellow control corneas. Staining for diabetic markers integrin alpha(3)beta(1), nidogen-1, nidogen-2, and laminin gamma2 chain became weaker and irregular upon proteinase transduction. Expression of phosphorylated Akt was decreased in proteinase-transduced corneas. Joint overexpression of both proteinases led to significantly slower corneal wound healing that became similar to that observed in diabetic corneas. The data suggest that MMP-10 and CTSF may be responsible for abnormal marker patterns and impaired wound healing in diabetic corneas. Inhibition of these proteinases in diabetic corneas may alleviate diabetic keratopathy symptoms.