跳转至内容
Merck
  • AMPK-Akt Double-Negative Feedback Loop in Breast Cancer Cells Regulates Their Adaptation to Matrix Deprivation.

AMPK-Akt Double-Negative Feedback Loop in Breast Cancer Cells Regulates Their Adaptation to Matrix Deprivation.

Cancer research (2018-01-18)
Manipa Saha, Saurav Kumar, Shoiab Bukhari, Sai A Balaji, Prashant Kumar, Sravanth K Hindupur, Annapoorni Rangarajan
摘要

Cell detachment from the extracellular matrix triggers anoikis. Disseminated tumor cells must adapt to survive matrix deprivation, while still retaining the ability to attach at secondary sites and reinitiate cell division. In this study, we elucidate mechanisms that enable reversible matrix attachment by breast cancer cells. Matrix deprival triggered AMPK activity and concomitantly inhibited AKT activity by upregulating the Akt phosphatase PHLPP2. The resultant pAMPKhigh/pAktlow state was critical for cell survival in suspension, as PHLPP2 silencing also increased anoikis while impairing autophagy and metastasis. In contrast, matrix reattachment led to Akt-mediated AMPK inactivation via PP2C-α-mediated restoration of the pAkthigh/pAMPKlow state. Clinical specimens of primary and metastatic breast cancer displayed an Akt-associated gene expression signature, whereas circulating breast tumor cells displayed an elevated AMPK-dependent gene expression signature. Our work establishes a double-negative feedback loop between Akt and AMPK to control the switch between matrix-attached and matrix-detached states needed to coordinate cell growth and survival during metastasis.Significance: These findings reveal a molecular switch that regulates cancer cell survival during metastatic dissemination, with the potential to identify targets to prevent metastasis in breast cancer. Cancer Res; 78(6); 1497-510. ©2018 AACR.

材料
货号
品牌
产品描述

Sigma-Aldrich
苯甲脒, ≥95.0%
Sigma-Aldrich
Ser/Thr磷酸酶检测试剂盒1(K-R-pT-I-R-R), Ser/Thr Phosphatase Assay Kit 1used to detect PP2A activity by either dephosphorylation of the phosphopeptide.
Sigma-Aldrich
MISSION® esiRNA, targeting human PRKAA2