Skip to Content
Merck
All Photos(1)

Key Documents

20920

Sigma-Aldrich

Cadmium sulfate 8/3-hydrate

puriss. p.a., ACS reagent, ≥99.0% (calc. based on CdSO4 · 8/3 H2O, KT)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CdSO4 · 8/3H2O
CAS Number:
Molecular Weight:
256.57
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NB.24
Assay:
≥99.0% (calc. based on CdSO4 · 8/3 H2O, KT)
form:
powder or crystals

grade

ACS reagent
puriss. p.a.

Quality Level

Assay

≥99.0% (calc. based on CdSO4 · 8/3 H2O, KT)

form

powder or crystals

impurities

≤0.005% insoluble matter in H2O

anion traces

chloride (Cl-): ≤10 mg/kg
nitrate and nitrite (as NO3-): ≤30 mg/kg

cation traces

As: ≤2 mg/kg
Ca: ≤50 mg/kg
Co: ≤5 mg/kg
Cr: ≤5 mg/kg
Cu: ≤5 mg/kg
Fe: ≤5 mg/kg
K: ≤50 mg/kg
Mg: ≤5 mg/kg
Mn: ≤5 mg/kg
Na: ≤50 mg/kg
Ni: ≤10 mg/kg
Pb: ≤20 mg/kg
Zn: ≤50 mg/kg

SMILES string

[Cd++].[Cd++].[Cd++].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O

InChI

1S/3Cd.3H2O4S.8H2O/c;;;3*1-5(2,3)4;;;;;;;;/h;;;3*(H2,1,2,3,4);8*1H2/q3*+2;;;;;;;;;;;/p-6

InChI key

AGHQMAQBLOTWPQ-UHFFFAOYSA-H

Looking for similar products? Visit Product Comparison Guide

Related Categories

Signal Word

Danger

Hazard Classifications

Acute Tox. 2 Inhalation - Acute Tox. 3 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1B - Muta. 1B - Repr. 1B - STOT RE 1

Target Organs

Bone,Kidney,Respiratory system

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Yun-Jie Yang et al.
Acta biomaterialia, 5(9), 3488-3496 (2009-05-16)
Mesoporous silica nanotubes (MSNTs) and amine-functionalized MSNTs (NH(2)-MSNTs) have been successfully synthesized via a sol-gel route using needle-like CaCO(3) nanoparticles as inorganic templates and post-modification with 3-aminopropyltriethoxysilane. Subsequently, the preformed nanotubes were functionalized with blue fluorescent CdS quantum dots, as
Diana Morales-Fonseca et al.
Revista iberoamericana de micologia, 27(3), 111-118 (2010-03-30)
The use of basidiomycetes for metal removal is an alternative to traditional methods. In this, the biomass acts as a natural ionic exchanger removing metals from solution. To develop a laminar biosorbent using a basidiomycete fungus resistant to high Cd
Electric-field enhancement of photovoltaic devices: a third reason for the increase in the efficiency of photovoltaic devices by carbon nanotubes.
Wonjoo Lee et al.
Advanced materials (Deerfield Beach, Fla.), 22(20), 2264-2267 (2010-03-31)
M Lawrence et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 91, 30-34 (2012-02-22)
The pure and glycine doped cadmium thiourea sulphate (GCTS) single crystals were grown successfully by slow evaporation method at room temperature. The concentration of dopant in the mother solution was 1 mol%. There is a change in unit cell. The
R Barzanti et al.
Journal of hazardous materials, 196, 66-72 (2011-09-29)
This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service