Skip to Content
Merck
All Photos(2)

Key Documents

723037

Sigma-Aldrich

2-Cyano-2-propyl dodecyl trithiocarbonate

97% (HPLC)

Synonym(s):

S-(2-Cyanoprop-2-yl)-S-dodecyltrithiocarbonate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C17H31NS3
CAS Number:
Molecular Weight:
345.63
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

97% (HPLC)

form

liquid

refractive index

n20/D 1.535

density

0.991 g/mL at 25 °C

storage temp.

2-8°C

SMILES string

CCCCCCCCCCCCSC(=S)SC(C)(C)C#N

InChI

1S/C17H31NS3/c1-4-5-6-7-8-9-10-11-12-13-14-20-16(19)21-17(2,3)15-18/h4-14H2,1-3H3

InChI key

QSVOWVXHKOQYIP-UHFFFAOYSA-N

General description

Need help choosing the correct RAFT Agent? Please consult the RAFT Agent to Monomer compatibility table.

Application

2-Cyano-2-propyl dodecyl trithiocarbonate is used as a RAFT agent for controlled radical polymerization; especially suited for the polymerization of methacrylate, methacrylamide, and styrene monomers. It is also used as a Chain Transfer Agent (CTA).

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jeonghun Lee et al.
Journal of controlled release : official journal of the Controlled Release Society, 304, 164-172 (2019-05-15)
A blood clot (thrombus) is formed as a final product of the hemostatic process with two major components, a mesh of cross-linked fibrin and platelets activated by high concentration of hydrogen peroxide (H2O2). Thrombus formation impedes blood flow to brain
Matías Regiart et al.
Analytica chimica acta, 963, 83-92 (2017-03-25)
We report a hybrid glass-poly (dimethylsiloxane) microfluidic immunosensor for epidermal growth factor receptor (EGFR) determination, based on the covalent immobilization of anti-EGFR antibody (anti-EGFR) on amino-functionalized mesoporous silica (AMS) retained in the central channel of a microfluidic device. The synthetized
Liqin Mei et al.
Journal of materials chemistry. B, 8(25), 5434-5440 (2020-06-13)
Zwitterionic polymers have attracted increasing attention due to their excellent fouling resistance ability and eco-friendliness. Yet, their non-degradability and hydrophilic nature limit their applications. In this study, we have prepared a novel surface-fragmenting hyperbranched copolymer with tertiary carboxybetaine ester (TCB)
Hsiu-Pen Lin et al.
Macromolecular bioscience, 20(6), e2000049-e2000049 (2020-04-08)
Cationic polymers exhibit high cytotoxicity via strong interaction with cell membranes. To reduce cell membrane damage, a hydrophilic polymer is introduced to the cationic nanoparticle surface. The hydrophilic polymer coating of cationic nanoparticles resulted in a nearly neutral nanoparticle. These
So Jung Park et al.
ACS applied materials & interfaces, 12(43), 49165-49173 (2020-09-30)
Control of the cross-linking reaction is imperative when developing a sophisticated in situ forming hydrogel in the body. In this study, a heteroarmed thermoresponsive (TR) nanoparticle was designed to investigate the mechanism of controlling reactivity of the functional groups introduced

Articles

A series of polymerization were carried out using RAFT agents and monomers yielding well-defined polymers with narrow molecular weight distributions. The process allows radical-initiated growing polymer chains to degeneratively transfer reactivity from one to another through the use of key functional groups (dithioesters, trithiocarbonates, xanthates and dithiocarbamates). RAFT agents help to minimize out-of-control growth and prevent unwanted termination events from occurring, effectively controlling polymer properties like molecular weight and polydispersity. RAFT agents are commercially available. RAFT does not use any cytotoxic heavy metal components (unlike ATRP).

RAFT (Reversible Addition Fragmentation chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Over the past two decades, the rapid advance of controlled living polymerization (CLP) techniques.

The modification of biomacromolecules, such as peptides and proteins, through the attachment of synthetic polymers has led to a new family of highly advanced biomaterials with enhanced properties.

See All

Protocols

We present an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

An article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service