Skip to Content
Merck
  • Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

Oncotarget (2015-10-21)
Balkrishna Chaube, Parmanand Malvi, Shivendra Vikram Singh, Naoshad Mohammad, Avtar Singh Meena, Manoj Kumar Bhat
ABSTRACT

Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting mouse Ldha
Sigma-Aldrich
Sodium fluoride, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium fluoride, ACS reagent, ≥99%
Sigma-Aldrich
Sodium fluoride, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Phenobarbital
Sigma-Aldrich
Streptozocin, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium oxamate, ≥98%
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Phloretin, ≥99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Sodium fluoride, BioXtra, ≥99%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Sodium fluoride, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
MISSION® esiRNA, targeting human LDHA
Sigma-Aldrich
Mechlorethamine hydrochloride, 98%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Supelco
Phenobarbital solution, 1 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Supelco
D-(+)-Glucose, analytical standard