922110
Rhombic chamber chip - 100 μl
Fluidic 221, COP
Synonym(s):
Microfluidic chip, Microparticle synthesis, Nanoparticle
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
description
Microfludic chip x1
Looking for similar products? Visit Product Comparison Guide
Application
Chamber chips come in the format of a microscopy slide (75.5 mm x 25.5 mm x 1.5 mm) and are equipped with Mini Luer interfaces. Their key microfluidic elements are reaction chambers of various volumes. Chamber chips are the perfect tool to facilitate reactions, such as amplification of a targeted DNA during qPCR, or to extract target molecules out of a given sample in preparative quantities. These chips can, for example, be used as nucleic acid extraction devices via magnetic beads simply via applying beads and sample and by using an external magnet to hold the beads in place. These procedures can be done completely manually with a pipette – besides the magnet no additional equipment is necessary – or semi-automated with normal peristaltic pumps found in most life science labs.
Rhombic chamber chip - 100 μl, Fluidic 221, COP is made of COP (Cyclic olefin polymer) and offers rhombic chambers with two inlets and two outlets. These chips are versatile tools for various experimental procedures such as sample preparation.
Chip Properties:
Rhombic chamber chip - 100 μl, Fluidic 221, COP is made of COP (Cyclic olefin polymer) and offers rhombic chambers with two inlets and two outlets. These chips are versatile tools for various experimental procedures such as sample preparation.
Chip Properties:
- Orientation: Lengthwise
- Mini Luer Interface
- Material: Cyclic olefin polymer
- Chamber Volume: 100μl
- Chamber Depth: 600μm
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Recent advances of controlled drug delivery using microfluidic platforms
Advanced Drug Delivery Reviews, 128, 3-28 (2018)
Microfluidic-assisted fabrication of carriers for controlled drug delivery.
Lab on a chip, 17, 1856-1883 (2017)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service