900416
Nitrogen-doped graphene
Synonym(s):
N-Doped graphene, NDG, NG
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
form
powder
composition
Carbon, >80 wt. %
Nitrogen, >4 wt. %
color
black
Looking for similar products? Visit Product Comparison Guide
General description
This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.
Physical properties
Electrocatalytic oxygen reduction reaction (ORR) onset potential: >-0.1 V (0.1 M KOH vs Ag/AgCl).
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Facile synthesis of mesoporous nitrogen-dopedgraphene: An efficient methanol?tolerantcathodiccatalystfor oxygen reductionreaction.
Nano Energy, 3, 55-63 (2014)
Physical chemistry chemical physics : PCCP, 16(3), 1060-1066 (2013-11-30)
Chemical doping of nitrogen into graphene can significantly enhance the reversible capacity and cyclic stability of the graphene-based lithium ion battery (LIB) anodes, and first principles calculations based on density functional theory suggested that pyridinic-N shows stronger binding with Li
Scientific reports, 5, 14564-14564 (2015-09-29)
Understanding the modification of the graphene's electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy
Articles
Recent Advances in Scalable Synthesis and Processing of Two-Dimensional Materials
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service