Skip to Content
Merck
All Photos(2)

Documents

900181

Sigma-Aldrich

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

greener alternative

high-conductivity grade

Synonym(s):

1% Pedot/PSS, Orgacon S315

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12162002

grade

high-conductivity grade

Quality Level

description

Visual Light Transmission (VLT): ≥ 80%

form

dispersion

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

concentration

0.5-1 wt. % (PEDOT: PSS in water)

sheet resistance

<200 Ω/sq (coating : 40μ wet, drying: 6 min 130°C)

pH

2-3.5

viscosity

≤70 mPa.s(20 °C)

greener alternative category

storage temp.

2-8°C

SMILES string

CC1=C2OCCOC2=C(C)S1.CCC(C3=CC=CC=C3)C.C[SO3-]

General description

High-conductivity grade.
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer that is formed by electropolymerizing 3,4-ethylenedioxythiophene in a solution of poly(styrenesulfonate) (PSS). PEDOT is doped with positive ions and PSS with negative ions. It is mainly used in organic electronics due to the properties, which include
  • low band gap
  • good optical properties
  • high conductivity
  • low redox potential
  • easy processing
  • tunable film forming ability

We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.

Application

Orgacon S315 is ready-to-use and made with conductive polymer PEDOT:PSS. Typical application processes are slot die, Meyer bar and gravure coating. It is particularly designed for optimal properties on PET and meet the requirements of several transparent electrodes applications as alternative to ITO.

  • ITO substitution coating.
  • ITO-free OPV.

  • Surface electrical resistance (SER) at 90% VLT* (visual light transmission): 125 Ω/square.
*Typical properties on PET with bar coater. Thermal cured at 130 °C/ 6 min. VLT according to ASTM D 1003, excludes substrate.
  • Stability ratio R/R_0 (500 hr at 60 °C, 95% RH) : 1.3.
PEDOT:PSS can be used as an electrode material with high mobility for charge carriers. It can be used for a wide range of energy based applications such as organic photovoltaics (OPV), dye sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs), supercapacitors and biomedical sensors.
PEDOT:PSS is widely used as a transparent and conductive coating in applications like touchscreens, flat panel displays, and photovoltaic devices. It is commonly used as an electrode material in OPVs. It serves as the hole transport layer and a transparent anode, enabling efficient charge extraction and transport within the device.

Preparation Note

  • Dilute with DI water or compatible solvent if needed.
  • Pre-treated substrate with corona- or plasma treatment increase adhesion.

Other Notes

  • These additives have low water content (less than 100 ppm).
  • Please handle under inert and moisture free environment (glove box).
  • Keep containers tightly closed.
  • Keep away from heat and ignition sources.
  • Store in a cool and dry place.
  • Avoid storing together with oxidizers.

Legal Information

Orgacon is a trademark of Agfa-Gevaert N.V.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Roll-to-Roll Slot-Die Coated Organic Photovoltaic (OPV) Modules with High Geometrical Fill Factors
Galagan Y, et al.
Energy Technology, 3(8), 834-842 (2015)
Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT: PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor.
Cho S, et al.
ACS Applied Materials & Interfaces, 7(19), 10213-10227 (2015)

Articles

Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.

Professor Rivnay (Northwestern University, USA) discusses using organic mixed conductors as an alternative to efficiently bridge the ionic world of biology with contemporary microelectronics.

Recent progress in the area of solution-processed functional materials has led to the development of a variety of thin-film optoelectronic devices with significant promise in the industrial and consumer electronics fields.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service