Accéder au contenu
Merck
  • Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant.

Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant.

Dalton transactions (Cambridge, England : 2003) (2015-06-10)
Subodh Kumar, Nikita Singhal, Raj K Singh, Piyush Gupta, Raghuvir Singh, Suman L Jain
RÉSUMÉ

Chitosan coated magnetic nanoparticles were synthesized and used as a support for the immobilization of the cobalt(II) acetylacetonate complex [Co(acac)2] and quaternary triphenylphosphonium bromide [P(+)Ph3Br(-)] targeting -NH2 and -OH moieties located on the surface of chitosan. The synthesized material was used as a catalyst for one pot direct synthesis of cyclic carbonates from olefins via an oxidative carboxylation approach with carbon dioxide using isobutyraldehyde as the sacrificial reductant and molecular oxygen as the oxidant. After the reaction, the catalyst was recovered by applying an external magnet and reused for several runs without significant loss in catalytic activity and no leaching was observed during this course.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Toluène, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Triphenylphosphine, ReagentPlus®, 99%
Sigma-Aldrich
Tetramethylsilane, ≥99.0% (GC)
Sigma-Aldrich
Triphenylphosphine, polymer-bound, 100-200 mesh, extent of labeling: ~1-1.5 mmol/g Capacity (Phosphor)
Sigma-Aldrich
Acétonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Isobutyraldéhyde, dry, 98%
Sigma-Aldrich
(3-Bromopropyl)trimethoxysilane, ≥97.0%
Sigma-Aldrich
Triphenylphosphine, ≥95.0% (GC)
Sigma-Aldrich
Tetramethylsilane, electronic grade, ≥99.99% trace metals basis
Sigma-Aldrich
Acétonitrile