Accéder au contenu
Merck
Toutes les photos(2)

Principaux documents

308315

Sigma-Aldrich

Lithium hexafluoroarsenate(V)

greener alternative

98%

Synonyme(s) :

Hexafluoroarsenate(V) lithium

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
LiAsF6
Numéro CAS:
Poids moléculaire :
195.85
Numéro CE :
Numéro MDL:
Code UNSPSC :
12352302
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Niveau de qualité

Pureté

98%

Forme

powder

Pertinence de la réaction

reagent type: catalyst
core: arsenic

Caractéristiques du produit alternatif plus écologique

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

Application(s)

battery manufacturing

Autre catégorie plus écologique

Chaîne SMILES 

[Li+].F[As-](F)(F)(F)(F)F

InChI

1S/AsF6.Li/c2-1(3,4,5,6)7;/q-1;+1

Clé InChI

GTZQZEYBOGZTEO-UHFFFAOYSA-N

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Lithium hexafluoroarsenate(V) is a class of electrolytic materials that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

The surface chemistry of Li electrodes in ethereal LiAsF6 was tested with new salts for potential battery systems.

Pictogrammes

Skull and crossbonesEnvironment

Mention d'avertissement

Danger

Mentions de danger

Classification des risques

Acute Tox. 3 Inhalation - Acute Tox. 3 Oral - Aquatic Acute 1 - Aquatic Chronic 1

Code de la classe de stockage

6.1B - Non-combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

Classe de danger pour l'eau (WGK)

WGK 3

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable

Équipement de protection individuelle

Eyeshields, Faceshields, Gloves, type P2 (EN 143) respirator cartridges


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Ling-Yun Yang et al.
Angewandte Chemie (International ed. in English), 53(14), 3631-3635 (2014-03-07)
A new category of crystalline polymer electrolyte prepared by the supramolecular self-assembly of polyethylene oxide (PEO), α-cyclodextrin (α-CD), and LiAsF6 is reported. The polymer electrolyte consists of the nanochannels formed by α-CDs in which the PEO/Li(+) complexes are confined. The
The Li-ion rechargeable battery: a perspective
Goodenough JB and Park K
Journal of the American Chemical Society, 135(4), 1167-1176 (2013)
Electrodes with high power and high capacity for rechargeable lithium batteries
Kang K, et al.
Science, 311(5763), 977-980 (2006)
Challenges for rechargeable Li batteries
Goodenough JB and Kim Y
Chemistry of Materials, 22(3), 587-603 (2009)
Towards greener and more sustainable batteries for electrical energy storage
Larcher D and Tarascon J
Nature Chemistry, 7(1), 19-19 (2015)

Articles

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Afficher tout

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique