Accéder au contenu
Merck
Toutes les photos(3)

Key Documents

203815

Sigma-Aldrich

Molybdenum(VI) oxide

99.97% trace metals basis

Synonyme(s) :

Molybdenum trioxide

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
MoO3
Numéro CAS:
Poids moléculaire :
143.94
Numéro CE :
Numéro MDL:
Code UNSPSC :
12352303
eCl@ss :
38180807
ID de substance PubChem :
Nomenclature NACRES :
NA.23

Pureté

99.97% trace metals basis

Forme

powder

Pf

795 °C (lit.)

Application(s)

battery manufacturing

Chaîne SMILES 

O=[Mo](=O)=O

InChI

1S/Mo.3O

Clé InChI

JKQOBWVOAYFWKG-UHFFFAOYSA-N

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Description générale

Molybdenum(VI) oxide, also known as molybdenum trioxide, is a compound of molybdenum and oxygen with the approximate chemical formula of MoO3. Typically, it a white or light yellow powder, although molybdenum(VI) oxide can adopt a high concentration of defects including oxygen vacancies that impart a bluish or greenish color. Molybdenum(VI) oxide has a high melting point of 2,620 °C. Chemically, molybdenum(VI) oxide is a strong oxidizing agent and has a high work function. Consequently, it is used as a catalyst in chemical reactions and as a starting material to produce other molybdenum compounds. In addition, it is added to pigments, glasses, lubricants, and plastics.

Application

Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13and Mo19 clusters. The new cluster product is a small band gap semiconductor.
Precursor to LAMOX fast ion conductors and superconductors.
Used in the solid state synthesis of a remarkable ternary, reduced molybdenum oxide, Pr4Mo9O18, whose structure contains previously unknown Mo7, Mo13 and Mo19 clusters. The new cluster product is a small band gap semiconductor.

Pictogrammes

Health hazardExclamation mark

Mention d'avertissement

Warning

Mentions de danger

Classification des risques

Carc. 2 - Eye Irrit. 2 - STOT SE 3

Organes cibles

Respiratory system

Code de la classe de stockage

11 - Combustible Solids

Classe de danger pour l'eau (WGK)

WGK 1

Point d'éclair (°F)

Not applicable

Point d'éclair (°C)

Not applicable

Équipement de protection individuelle

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


Certificats d'analyse (COA)

Recherchez un Certificats d'analyse (COA) en saisissant le numéro de lot du produit. Les numéros de lot figurent sur l'étiquette du produit après les mots "Lot" ou "Batch".

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Les clients ont également consulté

Patrick R Brown et al.
Nano letters, 11(7), 2955-2961 (2011-06-15)
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of
Seiichiro Murase et al.
Advanced materials (Deerfield Beach, Fla.), 24(18), 2459-2462 (2012-04-11)
An MoO(3) film spin-coated from a solution prepared by an extremely facile and cost-effective synthetic method is introduced as an anode buffer layer of bulk-heterojunction polymer photovoltaic devices. The device efficiency using the MoO(3) anode buffer layer is comparable to
Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells.
Nicholas P Sergeant et al.
Advanced materials (Deerfield Beach, Fla.), 24(6), 728-732 (2012-01-04)
Claudio Girotto et al.
ACS applied materials & interfaces, 3(9), 3244-3247 (2011-08-13)
We report on a sol-gel-based technique to fabricate MoO(3) thin films as a hole-injection layer for solution-processed or thermally evaporated organic solar cells. The solution-processed MoO(3) (sMoO(3)) films are demonstrated to have equal performance to hole-injection layers composed of either
Yu-Zhan Wang et al.
The Journal of chemical physics, 134(3), 034706-034706 (2011-01-26)
The electronic structures at the MoO(3)∕Co interface were investigated using synchrotron-based ultraviolet and x-ray photoelectron spectroscopy. It was found that interfacial chemical reactions lead to the reduction of Mo oxidation states and the formation of Co-O bonds. These interfacial chemical

Articles

Advances in materials have often been led by the development of new synthetic methods that provide control over size, morphology and structure.

Advances in materials have often been led by the development of new synthetic methods that provide control over size, morphology and structure. The preparation of materials in a scalable and continuous manner is critical when development moves beyond lab-scale quantities.

The production of hydrogen by catalytic water splitting is important for a wide range of industries including renewable energy petroleum refining and for the production of methanol and ammonia in the chemical industry.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique