Accéder au contenu
Merck
Toutes les photos(1)

Key Documents

202487

Sigma-Aldrich

Poly(ethylene glycol) methyl ether

average MN 550, methoxy, hydroxyl

Synonyme(s) :

Polyethylene glycol monomethyl ether

Se connecterpour consulter vos tarifs contractuels et ceux de votre entreprise/organisme


About This Item

Formule linéaire :
CH3(OCH2CH2)nOH
Numéro CAS:
Numéro MDL:
Code UNSPSC :
12162002
ID de substance PubChem :
Nomenclature NACRES :
NA.23

product name

Poly(ethylene glycol) methyl ether, average Mn 550

Densité de vapeur

>1 (vs air)

Niveau de qualité

Pression de vapeur

0.05 mmHg ( 20 °C)

Forme

semisolid

Poids mol.

average Mn 550

Indice de réfraction

n20/D 1.455

Viscosité

7.5 cSt(210 °F)(lit.)

Température de transition

Tm 20 °C

Densité

1.089 g/mL at 25 °C

Extrémité Ω

hydroxyl

Extrémité α

methoxy

InChI

1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3

Clé InChI

XNWFRZJHXBZDAG-UHFFFAOYSA-N

Vous recherchez des produits similaires ? Visite Guide de comparaison des produits

Application

Poly(ethylene glycol) methyl ether can be used as a pore-forming agent to prepare polysulfone membranes with enhanced hydrophilicity.

Poly(ethylene glycol) methyl ether-grafted polyamidoamine (PAMAM) dendrimers can be used as drug carrier systems for anticancer drugs.

Code de la classe de stockage

10 - Combustible liquids

Classe de danger pour l'eau (WGK)

WGK 1

Point d'éclair (°F)

359.6 °F - closed cup

Point d'éclair (°C)

182 °C - closed cup


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Les clients ont également consulté

Smita K Pawar et al.
International journal of pharmaceutics, 436(1-2), 183-193 (2012-06-23)
Efficacy of anticancer drug is limited by the severe adverse effects induced by drug; therefore the crux is in designing delivery systems targeted only to cancer cells. Toward this objectives, we propose, synthesis of poly(ethylene glycol) (PEG)-doxorubicin (DOX) prodrug conjugates
Mark G P Saifer et al.
Molecular immunology, 57(2), 236-246 (2013-11-10)
The use of methoxypoly(ethylene glycol) (mPEG) in PEG conjugates of proteins and non-protein therapeutic agents has led to the recognition that the polymer components of such conjugates can induce anti-PEG antibodies (anti-PEGs) that may accelerate the clearance and reduce the
Jiani Zheng et al.
Langmuir : the ACS journal of surfaces and colloids, 28(37), 13261-13273 (2012-08-28)
Alginate/chitosan/alginate (ACA) hydrogel microcapsules were modified with methoxy poly(ethylene glycol) (MPEG) to improve protein repellency and biocompatibility. Increased MPEG surface graft density (n(S)) on hydrogel microcapsules was achieved by controlling the grafting parameters including the buffer layer substrate, membrane thickness
Mulu Z Tesfay et al.
Journal of virology, 87(7), 3752-3759 (2013-01-18)
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic
Seung-Young Lee et al.
Biomaterials, 34(2), 552-561 (2012-10-20)
Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier

Articles

Accumulation of biological matter at surfaces is an inevitable event in virtually any environment in which natural and man-made materials are used. Although sometimes fouling of surfaces with biomolecules and bioorganisms has little consequence, biofouling must be minimized or controlled in order to maintain performance and safety of devices and structures.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique