Skip to Content
Merck
All Photos(1)

Key Documents

910708

Sigma-Aldrich

Titanium aluminium carbide 211

MAX Phase, ≥80%, ≤200 μm particle size

Synonym(s):

MAX Phase 211, Ti2AlC

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ti2AlC
CAS Number:
NACRES:
NA.23

Assay

≥80%

form

powder

color

dark gray

particle size

≤200 μm

Looking for similar products? Visit Product Comparison Guide

Application

MAX phases are a family of ternary carbides and nitrides that share a similar layered hexagonal crystal structure. They are so called because of their chemical formula: M(n+1)AXn —where n = 1, 2, or 3, where M is an early transition metal, A is an element from the IIIA or IVA groups, and X is carbon and/or nitrogen class of materials.
Ti2AlC MAX phase exhibits high-temperature stability, thermal shock resistance, damage tolerance, crack-healing capability, good machinability, and exceptional oxidation resistance (immune to thermal cycling), and was widely used for high-temperature applications such as high-temperature heating elements, gas burner nozzles and industrial die inserts.

MAX phases are important precursors for synthesizing MXene, a highly conductive 2-dimentional nanomaterial. MXenes are produced by selective etching of the A element from the MAX phases. It combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. Ti2AlC MAX phase is one of the most used MAX phase for MXene (Ti2CTx).

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

2D metal carbides and nitrides (MXenes) for energy storage
Anasori B, et al.
Nature Reviews. Materials, 2(2), 16098-16098 (2017)
MAX phases: bridging the gap between metals and ceramics
Radovic M and Barsoum M W
American Ceramic Society Bulletin, 92(3), 20-27 (2013)
Michael Naguib et al.
Advanced materials (Deerfield Beach, Fla.), 26(7), 992-1005 (2013-12-21)
Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by

Articles

Advanced technologies for energy conversion and storage are widely sought after for their potential to improve consumer and electronic device performance as well as for the prospect of reducing the societal and environmental impact of energy generation.

Professor Gogotsi and Dr. Shuck introduce MXenes: a promising family of two-dimensional materials with a unique combination of high conductivity, hydrophilicity, and extensive tunability.

Dr. Xiang’s and Maruyama’s review presents the most recent research activities on 1D vdWHs, including the candidate materials, the synthetic techniques, and characterization methods. The optoelectronic applications are discussed in detail for different constructions of the 1D vdWHs-based devices (FETs, sensors, LEDs, photovoltaic devices, and light detection). Some challenges and perspectives for future development and applications of 1D vdWHs are also proposed to conclude the review.

Professor Ebrahimi and Professor Robinson (Pennsylvania State University, USA) summarize recent advances in the synthesis of these 2D materials, resulting material properties, and related applications in biosensing of neurotransmitters, metabolites, proteins, nucleic acids, bacterial cells, and heavy metals.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service