Skip to Content
Merck
All Photos(1)

Key Documents

577928

Sigma-Aldrich

Lithium bis(trimethylsilyl)amide solution

1 M in toluene

Synonym(s):

LiHMDS, Hexamethyldisilazane lithium salt

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[(CH3)3Si]2NLi
CAS Number:
Molecular Weight:
167.33
Beilstein:
3567910
MDL number:
UNSPSC Code:
12352111
PubChem Substance ID:
NACRES:
NA.22

Quality Level

concentration

1 M in toluene

density

0.860 g/mL at 25 °C

SMILES string

[Li]N([Si](C)(C)C)[Si](C)(C)C

InChI

1S/C6H18NSi2.Li/c1-8(2,3)7-9(4,5)6;/h1-6H3;/q-1;+1

InChI key

YNESATAKKCNGOF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Lithium bis(trimethylsilyl)amide solution (LiHMDS) is generally used in organic synthesis as a non-nucleophilic strong Bronsted base.

Application

LiHMDS can be used as a reagent:
  • In the deprotonation and nucleophilic difluoromethylation reactions.
  • To synthesize isoquinoline derivatives by the addition of N-iodosuccinimide (NIS) to the α-benzyl tosylmethyl isocyanides.
  • To prepare arylboronic acid pinacol esters by the reaction of aryl fluorides with bis(pinacolato)diboron via palladium-catalyzed cross-coupling reaction.

Lithium bis(trimethylsilyl)amide is generally used in organic synthesis as a non-nucleophilic strong Brønsted base. It can be used for salt metathesis reaction for the synthesis of cesium bis(trimethylsilyl)amide (CsHMDS) and lithium fluoride by reacting with cesium fluoride.

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 3 - Asp. Tox. 1 - Eye Dam. 1 - Flam. Liq. 2 - Repr. 2 - Self-heat. 1 - Skin Corr. 1B - STOT RE 2 - STOT SE 3

Target Organs

Central nervous system

Supplementary Hazards

Storage Class Code

4.2 - Pyrophoric and self-heating hazardous materials

WGK

WGK 3

Flash Point(F)

48.0 °F - closed cup

Flash Point(C)

8.9 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Structural Studies of Cesium, Lithium/Cesium, and Sodium/Cesium Bis (trimethylsilyl) amide (HMDS) Complexes
Ojeda-Amador AI, et al.
Inorganic Chemistry, 55(11), 5719-5728 (2016)
Lithium and potassium bis (trimethylsilyl) amide: Utilizing non-nucleophilic bases as nitrogen sources
Bruning J, et al.
Tetrahedron Letters, 38(18), 3187-3188 (1997)
Nan Li et al.
Lab on a chip, 8(12), 2105-2112 (2008-11-22)
High-density live cell array serves as a valuable tool for the development of high-throughput immunophenotyping systems and cell-based biosensors. In this paper, we have, for the first time, demonstrated a simple fabrication process to form the hexamethyldisilazane (HMDS) and poly(ethylene
Tatsuya Nitabaru et al.
Journal of the American Chemical Society, 131(38), 13860-13869 (2009-09-10)
Full details of an anti-selective catalytic asymmetric nitroaldol reaction promoted by a heterobimetallic catalyst comprised of Nd(5)O(O(i)Pr)(13), an amide-based ligand, and NaHMDS (sodium hexamethyldisilazide) are described. A systematic synthesis and evaluation of amide-based ligands led to the identification of optimum
Juliana Tsz Yan Lee et al.
Scanning, 34(1), 12-25 (2012-04-26)
Common dehydration methods of cells on biomaterials for scanning electron microscopy (SEM) include air drying, hexamethyldisilazane (HMDS) or tetramethysilane (TMS) treatment and critical point drying (CPD). On the other side, freeze-drying has been widely employed in dehydrating biological samples and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service