Saltar al contenido
Merck

Cyclic RGD peptide analogues as antiplatelet antithrombotics.

Journal of medicinal chemistry (1992-05-29)
P L Barker, S Bullens, S Bunting, D J Burdick, K S Chan, T Deisher, C Eigenbrot, T R Gadek, R Gantzos, M T Lipari
RESUMEN

Stimulation of platelets activates GPIIbIIIa, the heterodimeric integrin receptor, to bind fibrinogen (Fg), which results in platelet aggregation. GPIIbIIIa/Fg binding inhibitors are potentially suitable for acute use during and after thrombolytic therapy as antithrombotic agents. Incorporation of the tripeptide sequence Arg-Gly-Asp (RGD), a common structural element of many integrin ligands, into cyclic peptides produced a series of peptides of the general structure BrAc-(AA1)-RGD-Cys-OH, which were prepared by solid-phase peptide synthesis. Cyclization was accomplished by reaction of the N-terminal bromoacetyl group with the cysteine sulfhydryl at pH 8 at high dilution, resulting in thioether-bridged cyclic peptides [cyclo-S-Ac-(AA1)-RGD-Cys-OH]. Use of alpha-substituted bromoacetyl groups gave rise to an analogous series of acetyl-substituted thioether-bridged cyclic peptides. Oxidation of the thioethers produced separable diastereomeric sulfoxide-bridged cyclic peptides. After thorough evaluation in a GPIIbIIIa ELISA assay and a platelet aggregation assay, G-4120 (70A; AA1 = D-Tyr; sulfoxide bridge) was selected for further investigation as an antithrombotic agent. G-4120 was equipotent in the platelet aggregation assay to kistrin, a highly potent inhibitor of fibrinogen-mediated platelet aggregation isolated from snake venom (IC50 = 0.15 microM).

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
2-(Trifluoromethyl)phenylacetic acid, 98%